14 results on '"Keener R"'
Search Results
2. On the Micrometeorology of the Southern Great Plains. 2: Turbulence Statistics.
- Author
-
Hicks, Bruce, Pendergrass, W., Vogel, C., Keener, R., and Leyton, S.
- Subjects
MICROMETEOROLOGY ,TURBULENCE ,ARID regions ,CONVECTION (Meteorology) ,KINETIC energy - Abstract
Fast-response micrometeorological data obtained from an instrumented 32-m tower at an arid site near Ocotillo, Texas are used to examine the daily time evolution of the lower atmosphere. Correlation coefficients between turbulence properties (fast response wind-speed components and temperature) confirm that over this sparsely vegetated site the effects of convection are observed soon after sunrise, well ahead of the morning transition from stable to unstable stratification. Details of this kind are obscured when results are considered as functions of conventional stability parameters, since such standard analytical methods combine features of the morning and evening transitions into a single presentation. Partial correlation coefficients and semi-partials indicate that the local turbulent kinetic energy is mainly associated with local fluxes of heat and momentum near neutral and in most stable conditions, but decreases substantially during the times of strongest instability (possibly reflecting the scatter introduced by sampling infrequent convective episodes using a single tower). For many of the variables considered here, the standard deviations are about the same as the linear averages, indicating that the distributions are close to log-normal. The present data indicate that if the intent is to address some specific situation then $$\pm $$ 10 % error bounds on turbulence quantities (e.g. fluxes) correspond to averaging over a distance scale of the order of 10 km and a time scale of about 3 h. As the distance and time scales become smaller, the uncertainties due to factors external to the local surface increase. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
3. Genotype inference from aggregated chromatin accessibility data reveals genetic regulatory mechanisms.
- Author
-
Wenz BM, He Y, Chen NC, Pickrell JK, Li JH, Dudek MF, Li T, Keener R, Voight BF, Brown CD, and Battle A
- Abstract
Background: Understanding the genetic causes for variability in chromatin accessibility can shed light on the molecular mechanisms through which genetic variants may affect complex traits. Thousands of ATAC-seq samples have been collected that hold information about chromatin accessibility across diverse cell types and contexts, but most of these are not paired with genetic information and come from diverse distinct projects and laboratories., Results: We report here joint genotyping, chromatin accessibility peak calling, and discovery of quantitative trait loci which influence chromatin accessibility (caQTLs), demonstrating the capability of performing caQTL analysis on a large scale in a diverse sample set without pre-existing genotype information. Using 10,293 profiling samples representing 1,454 unique donor individuals across 653 studies from public databases, we catalog 23,381 caQTLs in total. After joint discovery analysis, we cluster samples based on accessible chromatin profiles to identify context-specific caQTLs. We find that caQTLs are strongly enriched for annotations of gene regulatory elements across diverse cell types and tissues and are often strongly linked with genetic variation associated with changes in expression (eQTLs), indicating that caQTLs can mediate genetic effects on gene expression. We demonstrate sharing of causal variants for chromatin accessibility and diverse complex human traits, enabling a more complete picture of the genetic mechanisms underlying complex human phenotypes., Conclusions: Our work provides a proof of principle for caQTL calling from previously ungenotyped samples, and represents one of the largest, most diverse caQTL resources currently available, informing mechanisms of genetic regulation of gene expression and contribution to disease., Competing Interests: A.B. is a co-founder and equity holder of CellCipher, Inc, a stockholder in Alphabet, Inc, and has consulted for Third Rock Ventures. N.C. is an employee and shareholder of Exai Bio, Inc. J.K.P. and J.H.L. are employees of Gencove, Inc.
- Published
- 2024
- Full Text
- View/download PDF
4. Transcriptome data are insufficient to control false discoveries in regulatory network inference.
- Author
-
Kernfeld E, Keener R, Cahan P, and Battle A
- Subjects
- Humans, Chromatin Immunoprecipitation methods, Gene Expression Profiling methods, Gene Regulatory Networks genetics, Transcriptome genetics
- Abstract
Inference of causal transcriptional regulatory networks (TRNs) from transcriptomic data suffers notoriously from false positives. Approaches to control the false discovery rate (FDR), for example, via permutation, bootstrapping, or multivariate Gaussian distributions, suffer from several complications: difficulty in distinguishing direct from indirect regulation, nonlinear effects, and causal structure inference requiring "causal sufficiency," meaning experiments that are free of any unmeasured, confounding variables. Here, we use a recently developed statistical framework, model-X knockoffs, to control the FDR while accounting for indirect effects, nonlinear dose-response, and user-provided covariates. We adjust the procedure to estimate the FDR correctly even when measured against incomplete gold standards. However, benchmarking against chromatin immunoprecipitation (ChIP) and other gold standards reveals higher observed than reported FDR. This indicates that unmeasured confounding is a major driver of FDR in TRN inference. A record of this paper's transparent peer review process is included in the supplemental information., Competing Interests: Declaration of interests A.B. is a stockholder for Alphabet, Inc.; has consulted for Third Rock Ventures; and is a founder of CellCipher, Inc., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes.
- Author
-
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, and Battle A
- Subjects
- Humans, K562 Cells, Polymorphism, Single Nucleotide, Gene Expression Regulation, CRISPR-Cas Systems, Genome-Wide Association Study, Telomere genetics, Telomere metabolism, Telomere Homeostasis genetics
- Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Human telomere length is chromosome end-specific and conserved across individuals.
- Author
-
Karimian K, Groot A, Huso V, Kahidi R, Tan KT, Sholes S, Keener R, McDyer JF, Alder JK, Li H, Rechtsteiner A, and Greider CW
- Subjects
- Humans, Male, Chromosomes, Human genetics, Fetal Blood, Nanopore Sequencing methods, Telomere genetics, Telomere Homeostasis genetics, Telomere Shortening genetics, Chromosome Mapping methods
- Abstract
Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.
- Published
- 2024
- Full Text
- View/download PDF
7. Aggregation of recount3 RNA-seq data improves inference of consensus and tissue-specific gene co-expression networks.
- Author
-
Ravichandran P, Parsana P, Keener R, Hansen KD, and Battle A
- Abstract
Background: Gene co-expression networks (GCNs) describe relationships among expressed genes key to maintaining cellular identity and homeostasis. However, the small sample size of typical RNA-seq experiments which is several orders of magnitude fewer than the number of genes is too low to infer GCNs reliably. recount3 , a publicly available dataset comprised of 316,443 uniformly processed human RNA-seq samples, provides an opportunity to improve power for accurate network reconstruction and obtain biological insight from the resulting networks., Results: We compared alternate aggregation strategies to identify an optimal workflow for GCN inference by data aggregation and inferred three consensus networks: a universal network, a non-cancer network, and a cancer network in addition to 27 tissue context-specific networks. Central network genes from our consensus networks were enriched for evolutionarily constrained genes and ubiquitous biological pathways, whereas central context-specific network genes included tissue-specific transcription factors and factorization based on the hubs led to clustering of related tissue contexts. We discovered that annotations corresponding to context-specific networks inferred from aggregated data were enriched for trait heritability beyond known functional genomic annotations and were significantly more enriched when we aggregated over a larger number of samples., Conclusion: This study outlines best practices for network GCN inference and evaluation by data aggregation. We recommend estimating and regressing confounders in each data set before aggregation and prioritizing large sample size studies for GCN reconstruction. Increased statistical power in inferring context-specific networks enabled the derivation of variant annotations that were enriched for concordant trait heritability independent of functional genomic annotations that are context-agnostic. While we observed strictly increasing held-out log-likelihood with data aggregation, we noted diminishing marginal improvements. Future directions aimed at alternate methods for estimating confounders and integrating orthogonal information from modalities such as Hi-C and ChIP-seq can further improve GCN inference., Competing Interests: Competing interests A.B. is a consultant for Third Rock Ventures, LLC, a shareholder in Alphabet, Inc, and a founder of CellCipher, Inc.
- Published
- 2024
- Full Text
- View/download PDF
8. Human telomere length is chromosome specific and conserved across individuals.
- Author
-
Karimian K, Groot A, Huso V, Kahidi R, Tan KT, Sholes S, Keener R, McDyer JF, Alder JK, Li H, Rechtsteiner A, and Greider CW
- Abstract
Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. To probe these mechanisms, we developed a nanopore sequencing method, Telomere Profiling, that is easy to implement, precise, and cost effective with broad applications in research and the clinic. We sequenced telomeres from individuals with short telomere syndromes and found similar telomere lengths to the clinical FlowFISH assay. We mapped telomere reads to specific chromosome end and identified both chromosome end-specific and haplotype-specific telomere length distributions. In the T2T HG002 genome, where the average telomere length is 5kb, we found a remarkable 6kb difference in lengths between some telomeres. Further, we found that specific chromosome ends were consistently shorter or longer than the average length across 147 individuals. The presence of conserved chromosome end-specific telomere lengths suggests there are new paradigms in telomere biology that are yet to be explored. Understanding the mechanisms regulating length will allow deeper insights into telomere biology that can lead to new approaches to disease., Competing Interests: Competing interest declaration CWG and KK are inventors of US Patent PCT/US2023/073375 titled « Methods for telomere length measurement ».
- Published
- 2024
- Full Text
- View/download PDF
9. Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects.
- Author
-
Qi G, Strober BJ, Popp JM, Keener R, Ji H, and Battle A
- Subjects
- Humans, Alleles, Cell Differentiation genetics, Computer Simulation, Single-Cell Analysis methods, Sequence Analysis, RNA methods, Gene Expression Profiling methods, Gene Expression Regulation, Diabetes Mellitus, Type 2 metabolism
- Abstract
Differential allele-specific expression (ASE) is a powerful tool to study context-specific cis-regulation of gene expression. Such effects can reflect the interaction between genetic or epigenetic factors and a measured context or condition. Single-cell RNA sequencing (scRNA-seq) allows the measurement of ASE at individual-cell resolution, but there is a lack of statistical methods to analyze such data. We present Differential Allelic Expression using Single-Cell data (DAESC), a powerful method for differential ASE analysis using scRNA-seq from multiple individuals, with statistical behavior confirmed through simulation. DAESC accounts for non-independence between cells from the same individual and incorporates implicit haplotype phasing. Application to data from 105 induced pluripotent stem cell (iPSC) lines identifies 657 genes dynamically regulated during endoderm differentiation, with enrichment for changes in chromatin state. Application to a type-2 diabetes dataset identifies several differentially regulated genes between patients and controls in pancreatic endocrine cells. DAESC is a powerful method for single-cell ASE analysis and can uncover novel insights on gene regulation., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
10. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed.
- Author
-
Taub MA, Conomos MP, Keener R, Iyer KR, Weinstock JS, Yanek LR, Lane J, Miller-Fleming TW, Brody JA, Raffield LM, McHugh CP, Jain D, Gogarten SM, Laurie CA, Keramati A, Arvanitis M, Smith AV, Heavner B, Barwick L, Becker LC, Bis JC, Blangero J, Bleecker ER, Burchard EG, Celedón JC, Chang YPC, Custer B, Darbar D, de las Fuentes L, DeMeo DL, Freedman BI, Garrett ME, Gladwin MT, Heckbert SR, Hidalgo BA, Irvin MR, Islam T, Johnson WC, Kaab S, Launer L, Lee J, Liu S, Moscati A, North KE, Peyser PA, Rafaels N, Seidman C, Weeks DE, Wen F, Wheeler MM, Williams LK, Yang IV, Zhao W, Aslibekyan S, Auer PL, Bowden DW, Cade BE, Chen Z, Cho MH, Cupples LA, Curran JE, Daya M, Deka R, Eng C, Fingerlin TE, Guo X, Hou L, Hwang SJ, Johnsen JM, Kenny EE, Levin AM, Liu C, Minster RL, Naseri T, Nouraie M, Reupena MS, Sabino EC, Smith JA, Smith NL, Su JL, Taylor JG, Telen MJ, Tiwari HK, Tracy RP, White MJ, Zhang Y, Wiggins KL, Weiss ST, Vasan RS, Taylor KD, Sinner MF, Silverman EK, Shoemaker MB, Sheu WH, Sciurba F, Schwartz DA, Rotter JI, Roden D, Redline S, Raby BA, Psaty BM, Peralta JM, Palmer ND, Nekhai S, Montgomery CG, Mitchell BD, Meyers DA, McGarvey ST, Mak AC, Loos RJ, Kumar R, Kooperberg C, Konkle BA, Kelly S, Kardia SL, Kaplan R, He J, Gui H, Gilliland FD, Gelb BD, Fornage M, Ellinor PT, de Andrade M, Correa A, Chen YI, Boerwinkle E, Barnes KC, Ashley-Koch AE, Arnett DK, Laurie CC, Abecasis G, Nickerson DA, Wilson JG, Rich SS, Levy D, Ruczinski I, Aviv A, Blackwell TW, Thornton T, O'Connell J, Cox NJ, Perry JA, Armanios M, Battle A, Pankratz N, Reiner AP, and Mathias RA
- Abstract
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10
-9 ) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 ( STN1 ). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B ( SNM1B ) and PARN . In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes., Competing Interests: Declaration of Interests: The authors declare the following competing interests: J.C.C. has received research materials from GlaxoSmithKline and Merck (inhaled steroids) and Pharmavite (vitamin D and placebo capsules) to provide medications free of cost to participants in NIH-funded studies, unrelated to the current work. B.I.F. is a consultant for AstraZeneca Pharmaceuticals and RenalytixAI L.W. is on the advisory board for GlaxoSmithKline and receives grant funding from NIAID, NHLBI, and NIDDK, NIH I.V.Y. is a consultant for ElevenP15 S.A. receives equity and salary from 23andMe, Inc. M.H.C. receives grant support from GlaxoSmithKline S.T.W. receives royalties from UpToDate E.K.S. received grant support from GlaxoSmithKline and Bayer in the past three years. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. F.D.M. is supported by grants from NIH/NHLBI (HL139054,HL091889,HL132523,HL130045,HL098112,HL056177), the NIH/NIEHS (ES006614), the NIH/NIAID (AI126614), and the NIH/ Office of Director (OD023282). Vifor Pharmaceuticals provided medicine and additional funding to support recruitment for HL130045. Dr. Martinez is a council member for the Council for the Developing Child. P.T.E. is supported by a grant from Bayer AG to the Broad Institute focused on the genetics and therapeutics of cardiovascular diseases. Dr. Ellinor has also served on advisory boards or consulted for Bayer AG, Quest Diagnostics, and Novartis. K.C.B. receives royalties from UpToDate G.A. is an employee of Regeneron Pharmaceuticals and owns stock and stock options for Regeneron Pharmaceuticals. A.M. is an employee of Regeneron Pharmaceuticals and owns stock and stock options for Regeneron Pharmaceuticals. A.B. is a consultant for Third Rock Ventures, LLC and holds stock in Google, Inc. D.A.S. is the founder and chief scientific officer of Eleven P15, a company focused on the early diagnosis and treatment of pulmonary fibrosis- Published
- 2022
- Full Text
- View/download PDF
11. Review of Vesicular Stomatitis in the United States with Focus on 2019 and 2020 Outbreaks.
- Author
-
Pelzel-McCluskey A, Christensen B, Humphreys J, Bertram M, Keener R, Ewing R, Cohnstaedt LW, Tell R, Peters DPC, and Rodriguez L
- Abstract
Vesicular stomatitis (VS) is a vector-borne livestock disease caused by vesicular stomatitis New Jersey virus (VSNJV) or vesicular stomatitis Indiana virus (VSIV). The disease circulates endemically in northern South America, Central America, and Mexico and only occasionally causes outbreaks in the United States. Over the past 20 years, VSNJV outbreaks in the southwestern and Rocky Mountain regions occurred with incursion years followed by virus overwintering and subsequent expansion outbreak years. Regulatory response by animal health officials is deployed to prevent spread from lesioned animals. The 2019 VS incursion was the largest in 40 years, lasting from June to December 2019 with 1144 VS-affected premises in 111 counties in eight states (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, Texas, Utah, and Wyoming) and was VSIV serotype, last isolated in 1998. A subsequent expansion occurred from April to October 2020 with 326 VS-affected premises in 70 counties in eight states (Arizona, Arkansas, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas). The primary serotype in 2020 was VSIV, but a separate incursion of VSNJV occurred in south Texas. Summary characteristics of the outbreaks are presented along with VSV-vector sampling results and phylogenetic analysis of VSIV isolates providing evidence of virus overwintering.
- Published
- 2021
- Full Text
- View/download PDF
12. Tel1 Activation by the MRX Complex Is Sufficient for Telomere Length Regulation but Not for the DNA Damage Response in Saccharomyces cerevisiae .
- Author
-
Keener R, Connelly CJ, and Greider CW
- Subjects
- Amino Acid Motifs, Phosphorylation, Saccharomyces cerevisiae Proteins chemistry, Signal Transduction, Telomere Homeostasis, DNA Damage, Intracellular Signaling Peptides and Proteins metabolism, Multiprotein Complexes metabolism, Protein Serine-Threonine Kinases metabolism, Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae Proteins metabolism, Telomere metabolism
- Abstract
Previous models suggested that regulation of telomere length in Saccharomyces cerevisiae by Tel1(ATM) and Mec1(ATR) would parallel the established pathways regulating the DNA damage response. Here, we provide evidence that telomere length regulation differs from the DNA damage response in both the Tel1 and Mec1 pathways. We found that Rad53 mediates a Mec1 telomere length regulation pathway but is dispensable for Tel1 telomere length regulation, whereas in the DNA damage response, Rad53 is regulated by both Mec1 and Tel1 Using epistasis analysis with a Tel1 hypermorphic allele, Tel1-hy909, we found that the MRX complex is not required downstream of Tel1 for telomere elongation but is required downstream of Tel1 for the DNA damage response. Our data suggest that nucleolytic telomere end processing is not a required step for telomerase to elongate telomeres., (Copyright © 2019 by the Genetics Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
13. Consequences of interleukin 1β-triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4 + infiltration mimics human proliferative inflammatory atrophy.
- Author
-
Ashok A, Keener R, Rubenstein M, Stookey S, Bajpai S, Hicks J, Alme AK, Drake CG, Zheng Q, Trabzonlu L, Yegnasubramanian S, De Marzo AM, and Bieberich CJ
- Subjects
- Animals, Chronic Disease, Disease Models, Animal, Humans, Interleukin-1beta genetics, Male, Mice, Prostatic Neoplasms genetics, Prostatic Neoplasms immunology, Prostatitis immunology, Atrophy immunology, CD4-Positive T-Lymphocytes immunology, Inflammation immunology, Interleukin-1beta biosynthesis, Prostate immunology, Prostatic Diseases immunology
- Abstract
Background: Elevated expression of the proinflammatory cytokine interleukin 1β (IL-1β) has been observed in expressed prostatic secretions of patients with chronic prostatitis/chronic pelvic pain syndrome, and genetic polymorphisms associated with the IL1B gene are linked to increased risk for aggressive prostate cancer., Methods: To study the role of IL-1β expression in prostate inflammation, we examined IL1B expression in human prostatic proliferative inflammatory atrophy (PIA) lesions and developed a tetracycline-regulated human IL1B transgene in the mouse prostate., Results: Here, we demonstrate that IL1B expression is a common finding in human PIA lesions, which harbored focal IL1B expression in epithelial and stromal compartments. Human IL1B expression in the mouse prostate elicited acute and chronic inflammation. Penetrance and expressivity were variable and tunable by altering transgene dosage and the presence of an exogenous inducible marker antigen (green fluorescent protein). Inflammation was characterized by infiltration of CD4
+ T cells, demonstrating an adaptive immune response. Chronic inflammation persisted after doxycycline (Dox) withdrawal. Reactive epithelia increased expression of downstream cytokines, and altered glandular architecture was observed upon sustained induction of IL1B. Immunohistochemical analyses revealed a higher proliferative index and decreased Nkx3.1 expression in inflamed mouse prostates., Conclusions: These data implicate IL-1β in human prostate pathology and this model provides a versatile platform to interrogate molecular mechanisms of inflammation-associated prostate pathologies associated with episodic or sustained IL-1β expression., (© 2019 Wiley Periodicals, Inc.)- Published
- 2019
- Full Text
- View/download PDF
14. Joint modeling of time to recurrence and cancer stage at recurrence in oncology trials.
- Author
-
Marchenko O, Tsodikov A, Keener R, Katenka N, and Kloster Thomas Y
- Subjects
- Algorithms, Humans, Likelihood Functions, Clinical Trials as Topic, Models, Statistical, Neoplasm Recurrence, Local, Neoplasm Staging
- Abstract
This research was motivated by a clinical trial with bladder cancer patients who went through a surgery and were followed up for cancer recurrence. One of the main objectives of the trial was to evaluate the time to cancer recurrence in patients in control and experimental groups. At the time of recurrence, the disease stage was also evaluated. Because the stage of cancer at recurrence significantly impacts future treatment and patient prognosis of survival, analyzing the time to cancer recurrence and the stage at recurrence jointly provides more clinically relevant information than analyzing the time to recurrence alone. In this paper, we propose a stochastic model for the joint distribution of time to recurrence and cancer stage that (1) accounts for the recurrence caused by cancer cells surviving a treatment or a surgery and for the recurrence caused by spontaneous carcinogenesis, and (2) incorporates parameters that have biological meaning. To estimate the parameters, we use the maximum-likelihood method combined with the EM algorithm. To demonstrate the performance of our modeling, we evaluate the data from a clinical trial in patients with bladder cancer. We also use simulations to assess the sensitivity of the method.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.