47 results on '"Malespin, C. A."'
Search Results
2. Leveraging open science machine learning challenges for data constrained planetary mission instruments
- Author
-
Da Poian, Victoria, primary, Lyness, E I, additional, Qi, J Y, additional, Shah, I, additional, Lipstein, G, additional, Archer, P D, additional, Chou, L, additional, Freissinet, C, additional, Malespin, C A, additional, McAdam, A C, additional, Knudson, C A, additional, Theiling, B P, additional, and H”orst, S M, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater
- Author
-
Franz, H. B., Mahaffy, P. R., Webster, C. R., Flesch, G. J., Raaen, E., Freissinet, C., Atreya, S. K., House, C. H., McAdam, A. C., Knudson, C. A., Archer, Jr., P. D., Stern, J. C., Steele, A., Sutter, B., Eigenbrode, J. L., Glavin, D. P., Lewis, J. M. T., Malespin, C. A., Millan, M., Ming, D. W., Navarro-González, R., and Summons, R. E.
- Published
- 2020
- Full Text
- View/download PDF
4. Sedimentary Organics in Glen Torridon, Gale Crater, Mars: Results from the SAM Instrument Suite and Supporting Laboratory Analyses
- Author
-
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Millan, M, Williams, AJ, McAdam, AC, Eigenbrode, JL, Steele, A, Freissinet, C, Glavin, DP, Szopa, C, Buch, A, Summons, RE, Lewis, JMT, Wong, GM, House, CH, Sutter, B, McIntosh, O, Bryk, AB, Franz, HB, Pozarycki, C, Stern, JC, Navarro-Gonzalez, R, Archer, DP, Fox, V, Bennett, K, Teinturier, S, Malespin, C, Johnson, SS, Mahaffy, PR, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Millan, M, Williams, AJ, McAdam, AC, Eigenbrode, JL, Steele, A, Freissinet, C, Glavin, DP, Szopa, C, Buch, A, Summons, RE, Lewis, JMT, Wong, GM, House, CH, Sutter, B, McIntosh, O, Bryk, AB, Franz, HB, Pozarycki, C, Stern, JC, Navarro-Gonzalez, R, Archer, DP, Fox, V, Bennett, K, Teinturier, S, Malespin, C, Johnson, SS, and Mahaffy, PR
- Published
- 2023
5. Role of the Tenax® Adsorbent in the Interpretation of the EGA and GC‐MS Analyses Performed With the Sample Analysis at Mars in Gale Crater
- Author
-
Buch, A, Belmahdi, I, Szopa, C, Freissinet, C, Glavin, D. P, Millan, M, Summons, R, Coscia, D, Teinturier, S, Bonnet, J.‐Y, He, Y, Cabane, M, Navarro‐Gonzalez, R, Malespin, C. A, Stern, J, Eigenbrode, J, Mahaffy, P. R, and Johnson, S. S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Sample Analysis at Mars (SAM) experiment on the National Aeronautics and Space Administration Curiosity rover seeks evidence of organic compounds on the surface of Mars. Since the beginning of the mission, various organic molecules have been detected and identified. While several have been demonstrated to be indigenous to the Martian soil and rocks analyzed, others appear to have been produced from sources internal to the experiment. The objective of this study is to build an exhaustive molecular database to support the interpretation of SAM results by identifying all the chemical species produced from Tenax® adsorbents, by determining (1) the thermal degradation by‐products of Tenax®, (2) the effect of Tenax® conditioning on the formation of Tenax® by‐products, (3) the impact of MTBSTFA or a mixture of MTBSTFA and DMF on Tenax® decomposition, and (4) the reaction between Tenax® and calcium perchlorate. Our results indicate that the by‐products of the SAM trap are due to the impact of trap heating, the impact of the derivatization reagent (MTBSTFA) and the presence of perchlorate in Martian soil. Some of these by‐products are observed in the SAM gas chromatograph mass spectrometer data from Mars.
- Published
- 2019
- Full Text
- View/download PDF
6. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars
- Author
-
the MSL Science Team, Mahaffy, P. R., Webster, C. R., Stern, J. C., Brunner, A. E., Atreya, S. K., Conrad, P. G., Domagal-Goldman, S., Eigenbrode, J. L., Flesch, G. J., Christensen, L. E., Franz, H. B., Freissinet, C., Glavin, D. P., Grotzinger, J. P., Jones, J. H., Leshin, L. A., Malespin, C., McAdam, A. C., Ming, D. W., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pavlov, A. A., Steele, A., Trainer, M. G., Williford, K. H., and Wray, J. J.
- Published
- 2015
7. Sedimentary Organics in Glen Torridon, Gale Crater, Mars: Results From the SAM Instrument Suite and Supporting Laboratory Analyses
- Author
-
Millan, M., primary, Williams, A. J., additional, McAdam, A. C., additional, Eigenbrode, J. L., additional, Steele, A., additional, Freissinet, C., additional, Glavin, D. P., additional, Szopa, C., additional, Buch, A., additional, Summons, R. E., additional, Lewis, J. M. T., additional, Wong, G. M., additional, House, C. H., additional, Sutter, B., additional, McIntosh, O., additional, Bryk, A. B., additional, Franz, H. B., additional, Pozarycki, C., additional, Stern, J. C., additional, Navarro‐Gonzalez, R., additional, Archer, D. P., additional, Fox, V., additional, Bennett, K., additional, Teinturier, S., additional, Malespin, C., additional, Johnson, S. S., additional, and Mahaffy, P. R., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Constraining Alteration Processes Along the Siccar Point Group Unconformity, Gale Crater, Mars: Results From the Sample Analysis at Mars Instrument
- Author
-
Sutter, B., primary, McAdam, A. C., additional, Wong, G. M., additional, Clark, J. V., additional, Archer, P. D., additional, Franz, H. B., additional, Gasda, P. J., additional, Ming, D. W., additional, Yen, A., additional, Lewis, J. M. T., additional, Schwenzer, S. P., additional, Turner, S. M. R., additional, Rampe, E. B., additional, Eigenbrode, J. L., additional, Stern, J. C., additional, Thompson, L. M., additional, Dehouck, E., additional, Bedford, C., additional, Banham, S., additional, Bryk, A. B., additional, O’Connell‐Cooper, C., additional, House, C. S., additional, Millan, M., additional, Freissinet, C., additional, Navarro‐Gonzalez, R., additional, Mahaffy, P. R., additional, and Malespin, C. A., additional
- Published
- 2022
- Full Text
- View/download PDF
9. Evolved Gas Analyses of Sedimentary Rocks From the Glen Torridon Clay‐Bearing Unit, Gale Crater, Mars: Results From the Mars Science Laboratory Sample Analysis at Mars Instrument Suite
- Author
-
McAdam, A. C., primary, Sutter, B., additional, Archer, P. D., additional, Franz, H. B., additional, Wong, G. M., additional, Lewis, J. M. T., additional, Clark, J. V., additional, Millan, M., additional, Williams, A. J., additional, Eigenbrode, J. L., additional, Knudson, C. A., additional, Freissinet, C., additional, Glavin, D. P., additional, Stern, J. C., additional, Navarro‐González, R., additional, Achilles, C. N., additional, Ming, D. W., additional, Morris, R. V., additional, Bristow, T. F., additional, Rampe, E. B., additional, Thorpe, M. T., additional, House, C. H., additional, Andrejkovičová, S., additional, Bryk, A. B., additional, Fox, V. K., additional, Johnson, S. S., additional, Mahaffy, P. R., additional, and Malespin, C. A., additional
- Published
- 2022
- Full Text
- View/download PDF
10. Evolved Gas Analyses of Sedimentary Rocks and Eolian Sediment in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars Instrument from Yellowknife Bay to the Namib Dune
- Author
-
Sutter, B, McAdam, A. C, Mahaffy, P. R, Ming, D. W, Edgett, K. S, Rampe, E. B, Eigenbrode, J. L, Franz, H. B, Freissinet, C, Grotzinger, J. P, Steele, A, House, C. H, Archer, P. D, Malespin, C. A, Navarro-González, R, Stern, J. C, Bell, J. F, Calef, F. J, Gellert, R, Glavin, D. P, Thompson, L. M, and Yen, A. S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The sample analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2, and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 +/- 248-2373 +/- 820 μgC(CO2)/g) and CO (11 +/- 3-320 +/- 130 μgC(CO)/g) suggest that organic C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32 +/- 0.05-0.70 +/- 0.1 wt % CO3). Evolved NO amounts to 0.002 +/- 0.007-0.06 +/- 0.03 wt % NO3. Evolution of O2 suggests that oxychlorine phases (chlorate/perchlorate) (0.05 +/- 0.025-1.05 +/- 0.44 wt % ClO4) are present, while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H2O (0.9 +/- 0.3-2.5 +/- 1.6 wt % H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.
- Published
- 2017
- Full Text
- View/download PDF
11. Geochronology as a Framework for Planetary History through 2050
- Author
-
Cohen, Barbara, Arevalo, R., Jr, Bottke, W. F., Jr, Conrad, P. G, Farley, K. A, Fassett, C. I, Jolliff, B. L, Lawrence, S. J, Mahaffy, Paul, Malespin, C, Swindle, T. D, Wadhwa, M, and Anderson, F. S
- Subjects
Geosciences (General) - Abstract
Invest this decade in in situ instruments(including sample selection and handling can we choose using VR?) to TRL 6; put them on flight missions in the 2020s and 2030s to relevant destinations where in situ precision can provide meaningful constraints on geologic history.
- Published
- 2017
12. Discordant K-Ar and Young Exposure Dates for the Windjana Sandstone, Kimberley, Gale Crater, Mars
- Author
-
Vasconcelos, P. M, Farley, K. A, Malespin, C. A, Mahaffy, P, Ming, D, McLennan, S. M, Hurowitz, J. A, and Rice, Melissa S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
K-Ar and noble gas surface exposure age measurements were carried out on the Windjana sandstone, Kimberley region, Gale Crater, Mars, by using the Sample Analysis at Mars instrument on the Curiosity rover. The sandstone is unusually rich in sanidine, as determined by CheMin X-ray diffraction, contributing to the high K2O concentration of 3.09 +/- 0.20 wt % measured by Alpha-Particle X-ray Spectrometer analysis. A sandstone aliquot heated to approximately 915 C yielded a K-Ar age of 627 +/- 50 Ma. Reheating this aliquot yielded no additional Ar. A second aliquot heated in the same way yielded a much higher K-Ar age of 1710 +/- 110 Ma. These data suggest incomplete Ar extraction from a rock with a K-Ar age older than 1710 Ma. Incomplete extraction at approximately 900 C is not surprising for a rock with a large fraction of K carried by Ar-retentive K-feldspar. Likely, variability in the exact temperature achieved by the sample from run to run, uncertainties in sample mass estimation, and possible mineral fractionation during transport and storage prior to analysis may contribute to these discrepant data. Cosmic ray exposure ages from He-3 and Ne-21 in the two aliquots are minimum values given the possibility of incomplete extraction. However, the general similarity between the He-3 (57 +/- 49 and 18 +/- 32 Ma, mean 30 Ma) and Ne-21 (2 +/- 32 and 83 +/- 24 Ma, mean 54 Ma) exposure ages provides no evidence for underextraction. The implied erosion rate at the Kimberley location is similar to that reported at the nearby Yellowknife Bay outcrop.
- Published
- 2016
- Full Text
- View/download PDF
13. Volatile Analysis by Pyrolysis of Regolith (Vapor) for Planetary Resource Prospecting
- Author
-
Glavin, D. P, Malespin, C. A, Ten Kate, I. L, Mcadam, A, Getty, S. A, Mumm, E, Franz, H. B, Southard, A. E, Bleacher, J. E, and Mahaffy, P. R
- Subjects
Lunar And Planetary Science And Exploration ,Exobiology - Abstract
Measuring the chemical composition of planetary bodies and their atmospheres is key to understanding the formation of the Solar System and the evolution of the planets and their moons. In situ volatile measurements enable a ground-truth assessment of the distribution and abundance of resources such as water-ice and oxygen, important for a sustained human presence on the Moon and beyond. The Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument is a compact pyrolysis mass spectrometer designed to detect volatiles released from solid samples that are heated to elevated temperatures and is one technique that should be considered for resource prospecting on the Moon, Mars, and asteroids.
- Published
- 2016
14. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory
- Author
-
Conrad, P. G, Malespin, C. A, Franz, H. B, Pepin, R. O, Trainer, M. G, Schwenzer, S. P, Atreya, S. K, Freissinet, C, Jones, J. H, Manning, H, Owen, T, Pavlov, A. A, Wiens, R. C, Wong, M. H, and Mahaffy, P. R
- Subjects
Solar Physics ,Statistics And Probability ,Inorganic, Organic And Physical Chemistry ,Lunar And Planetary Science And Exploration - Abstract
Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.
- Published
- 2016
- Full Text
- View/download PDF
15. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample
- Author
-
Freissinet, C, Glavin, D. P, Buch, A, Szopa, C, Summons, R. E, Eigenbrode, J. L, Archer, P. D., Jr, Brinckerhoff, W. B, Brunner, A. E, Cabane, M, Franz, H. B, Kashyap, S, Malespin, C. A, Martin, M, Millan, M, Miller, K, Navarro-González, R, Prats, B. D, Steele, A, Teinturier, S, and Mahaffy, P. R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.
- Published
- 2016
16. Organic molecules revealed in Mars’s Bagnold Dunes by Curiosity’s derivatization experiment
- Author
-
Millan, M., primary, Teinturier, S., additional, Malespin, C. A., additional, Bonnet, J. Y., additional, Buch, A., additional, Dworkin, J. P., additional, Eigenbrode, J. L., additional, Freissinet, C., additional, Glavin, D. P., additional, Navarro-González, R., additional, Srivastava, A., additional, Stern, J. C., additional, Sutter, B., additional, Szopa, C., additional, Williams, A. J., additional, Williams, R. H., additional, Wong, G. M., additional, Johnson, S. S., additional, and Mahaffy, P. R., additional
- Published
- 2021
- Full Text
- View/download PDF
17. MARS ATMOSPHERE: The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars
- Author
-
Mahaffy, P. R., Webster, C. R., Stern, J. C., Brunner, A. E., Atreya, S. K., Conrad, P. G., Domagal-Goldman, S., Eigenbrode, J. L., Flesch, G. J., Christensen, L. E., Franz, H. B., Freissinet, C., Glavin, D. P., Grotzinger, J. P., Jones, J. H., Leshin, L. A., Malespin, C., McAdam, A. C., Ming, D. W., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pavlov, A. A., Steele, A., Trainer, M. G., Williford, K. H., and Wray, J. J.
- Published
- 2015
- Full Text
- View/download PDF
18. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars
- Author
-
Glavin, Daniel P, Freissinet, Caroline, Mahaffy, P, Miller, K, Eigenbrode, J, Summons, R, Martin, M, Franz, H, Steele, A, Archer, D, Atreya, S, Brickenhoff, W, Conrad, P, DesMarais, D, Dworkin, J, Malespin, C, McAdam, A, Ming, D, Pavlov, A, Stern, J, Brunner, A, Buch, A, Grotzinger, J, Kashyap, S, and Squyres, S
- Subjects
Geophysics - Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.
- Published
- 2015
19. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars
- Author
-
Glavin, D, Freissinet, C, Mahaffy, P, Miller, K, Eigenbrode, J, Summons, R, Martin, M, Franz, H, Steele, A, Archer, D, Atreya, S, Brickerhoff, W, Conrad, P, DesMarais, D, Dworkin, J, Malespin, C, McAdam, A, Ming, D, Pavlov, A, Stern, J, Brunner, A, Buch, A, Grotzinger, J, Kashyap, S, and Squyres, S
- Subjects
Geophysics - Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.
- Published
- 2015
20. Abiotic input of fixed nitrogen by bolide impacts in CH4+CO2+N2 and H2+CH4+CO2+N2 atmospheres. Comparison with nitrate levels measured by the curiosity rover's sample analysis at mars instrument
- Author
-
Navarro-González, Rafael, Navarro, Karina, Coll, Patrice, Mckay, Christopher, Sutter, Brad, Stern, Jennifer, Archer, P., Mcadam, Amy, Szopa, Cyril, Freissinet, Caroline, Franz, H., Buch, Arnaud, Prats, B., Millan, Maeva, Eigenbrode, L., Coscia, David, Teinturier, S., Bonnet, Jean-Yves, Glavin, D., Williams, A., Raulin, François, Cabane, Michel, Ming, D., Malespin, C., Mahaffy, Paul, Martín-Torres, F., Zorzano-Mier, Maria-Paz, Atreya, Sushil, Fraeman, A., Vasavada, Ashwin, Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), NASA Ames Research Center (ARC), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), NASA Johnson Space Center (JSC), NASA, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, GSFC Solar System Exploration Division, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Telespazio France, Department of Computer science, Electrical and Space engineering, Luleå University of Technology (LUT), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Michigan [Ann Arbor], University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
21. Search of Phosphine in the Evolved Gases from Hypophosphite/Phosphite Minerals in Lacustrine Sedimentary Rocks at Gale Crater by the Sample Analysis at Mars
- Author
-
Navarro-González, R., Coll, Patrice, Szopa, Cyril, Freissinet, Caroline, Buch, Arnaud, Mckay, C., Mcintosh, Ophélie, Millan, Maeva, Archer, P., Eigenbrode, J., Sutter, B., Prats, B., Williams, A., Mcadam, A., Franz, H., Steele, A., Atreya, S., Wong, G., Stern, J., Ming, D., Coscia, David, Teinturier, Samuel, Bonnet, Jean-Yves, Clark, J., House, C., Glavin, D., Raulin, François, Cabane, Michel, Malespin, C., Mahaffy, Paul, Martín-Torres, F., Zorzano-Mier, M.-P., Meslin, P.-Y, Rodriguez-Manfredi, J., Fraeman, A., Vasavada, A., McIntosh, Ophélie, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, NASA Ames Research Center (ARC), Georgetown University [Washington] (GU), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), University of Florida [Gainesville] (UF), Carnegie Institution for Science, University of Michigan [Ann Arbor], University of Michigan System, Pennsylvania State University (Penn State), Penn State System, NASA Johnson Space Center (JSC), NASA, Department of Geological Sciences [Gainesville] (UF|Geological), University of Aberdeen, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and California Institute of Technology (CALTECH)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience
- Published
- 2021
22. Day-night differences in Mars methane suggest nighttime containment at Gale crater
- Author
-
Webster, C. R., Mahaffy, Paul R., Pla García, J., Rafkin, S. C. R., Moores, J. E., Atreya, S. K., Flesch, G. J., Malespin, C. A., Teinturier, S. M., Kalucha, H., Smith, C. L., Viúdez Moreiras, Daniel, Vasavada, A. R., and Agencia Estatal de Investigación (AEI)
- Subjects
composition [Planets and satellites] ,atmospheres [Planets and satellites] ,spectroscopic [Techniques] - Abstract
We report new measurements of atmospheric methane by the Curiosity rover’s Tunable Laser Spectrometer that is part of the Sample Analysis at Mars suite (TLS-SAM), finding nondetections during two daytime measurements of average value 0.05 ± 0.22 ppbv (95% confidence interval CI). These are in marked contrast with nighttime background levels of 0.52 ± 0.10 (95% CI) from four measurements taken during the same season of northern summer. This large day-night difference suggests that methane accumulates while contained near the surface at night, but drops below TLS-SAM detection limits during the day, consistent with the daytime nondetection by instruments on board the ExoMars Trace Gas Orbiter. With no evidence for methane production by the rover itself, we propose that the source is one of planetary micro-seepage. Dynamical modeling indicates that such methane release is contained within the collapsed planetary boundary layer (PBL) at night due to a combination of nocturnal inversion and convergent downslope flow winds that confine the methane inside the crater close to the point where it is released. The methane abundance is then diluted during the day through increased vertical mixing associated with a higher altitude PBL and divergent upslope flow that advects methane out of the crater region. We also report detection of a large spike of methane in June 2019 with a mean in situ value over a two-hour ingest of 20.5 ± 4 ppbv (95% CI). If near-surface production is occurring widely across Mars, it must be accompanied by a fast methane destruction or sequestration mechanism, or both. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Funding: funding from NASA’s Planetary Science Division is acknowledged by authors C.W., P.M., S.A., G.F., C.M., S.T., S.R., A.V. D.V.M. and J.P.G. acknowledge funding from Centro de Astrobiología (CAB, CSIC-INTA), under contract ESP2016-79612-C3-1-R. J.M., H.K. and C.S. acknowledge funding from the Canadian Space Agency MSL participating scientist program. J.P.G. acknowledges additional funding from the Spanish Ministry of Economy and Competitiveness under contract ESP2016-79612-C3-1-R. Author contributions: C.W., P.M. = TLS-SAM Instrument design, build and testing (IDBT), surface operations (SO), test-bed activities (TBA), data analysis (DA), data correlations (DC), science interpretation (SI). G.F., C.M. = IDBT, SO, TBA, D.A.; S.A., J.M., H.K., C.S., D.V.M., J.P.G., S.R., A.V. = SI, DC; S.T. = SO. Competing interests: no potential conflicts of interest exist for any of the listed authors. Data and materials availability: data described in the paper are publicly-available from NASA’s Planetary Data System (PDS) under an arrangement with the Mars Science Laboratory (MSL) project. URL of SAM page at PDS is http://pds-geosciences.wustl.edu/missions/msl/sam.htm. Peerreview
- Published
- 2021
23. Optimization of the TMAH Thermochemolysis Technique for the Detection of Trace Organic Matter on Mars by the SAM and MOMA-Pyr-GC-MS Experiment
- Author
-
Buch, A., Morisson, M., Szopa, Cyril, Millan, Maeva, Freissinet, Caroline, He, Y., Glavin, Daniel, Bonnet, Jean-Yves, Coscia, David, Williams, A., Stalport, F., Raulin, François, Stambouli, M., Teinturier, Samuel, Navarro-González, Rafael, Malespin, C., Mahaffy, Paul, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Georgetown University [Washington] (GU), NASA Goddard Space Flight Center (GSFC), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Towson University [Towson, MD, United States], University of Maryland System, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Buch, Arnaud
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; Boththe Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA)instrumentsare able to identify organic material at the Martian surface and subsurface. Both experiments are equipped with pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS)and derivatization reagents (MTBSTFA)that will allowthe analyzerefractory com-pounds,making them more volatile and protecting the labile chemical groups. In order to improve the Pyr-GC-MS analysis, TMAH (tetramethylammonium hydrox-ide) will be used on MOMA and SAM to extract refrac-tory compounds (macromolecules, kerogen, etc.) and protect polar compounds released from the pyrolysis ex-periment.We performed pyrolysis and TMAH-thermochemolysis of a Martian regolith simulant (JSC-Mars-1) to optimizeanalytical parameters, especially the thermochemolysis temperature, to ensure the success of the near future in situthermochemolysis analyses on Mars.
- Published
- 2018
24. The First Complete SAM Wet Chemistry Experiment on Mars
- Author
-
Malespin, C., Freissinet, Caroline, Glavin, D., Mahaffy, P., Millan, M., Buch, A., Szopa, Cyril, Teinturier, Samuel, Mcadam, Amy, Williams, R., Eigenbrode, J., Raaen, E., Dworkin, J., Navarro-González, R., NASA Goddard Space Flight Center (GSFC), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Georgetown University [Washington] (GU), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Goddard Earth Sciences and Technology and Research (GESTAR), Universities Space Research Association (USRA)-NASA, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), and Buch, Arnaud
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; Introduction: The Sample Analysis at Mars (SAM) instrument suite is currently operating in the Curiosity rover in Gale Crater, Mars. SAM carries nine sealed wet chemistry cups, seven which contain a mixture of N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide and dimethylformamide (MTBSTFA:DMF 4:1) for derivatization and two that are filled with tetramethylammonium hydroxide (TMAH) and methanol for thermochemolysis [1]. Here we describe the first derivatization experiment performed on Mars with SAM that includes the puncture of one of the MTBSTFA cup. Overview of wet chemistry. One of the primary goals of the SAM investigation is the search for organic compounds on Mars. The wet chemistry cups onboard SAM are intended to make complex organic molecules more volatile derivatized products that can be readily analyzed by GCMS. An example of the MTBSTFA derivatization reaction with an amino acid is shown in Figure 1. The seven derivatization cups contain 0.5 mL of a mixture of MTBSTFA and DMF in a 4:1 ratio. These cups also contain trace standards (36.2 nmol of 3-fluorovaline and 24.2 nmol of pyrene) (Figure 1) for calibration and verification purposes.
- Published
- 2018
25. Detection of Nitrites by the Sample Analysis at Mars (SAM) Instrument. Implications for the Oxidation State of the Atmosphere
- Author
-
Navarro-González, Rafael, Coll, Patrice, Sutter, B., Stern, J., Mckay, C., Martín-Torres, F., Zorzano-Mier, M.-P., Archer, P., Buch, A., Cabane, Michel, Coscia, David, Glavin, Daniel, Franz, H., Freissinet, Caroline, McAdam, Amy, Ming, D., Raulin, François, Szopa, Cyril, Teinturier, Samuel, Mahaffy, R., Malespin, C., Vasavada, A., Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Luleå University of Technology (LUT), Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), NASA Johnson Space Center (JSC), NASA, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Buch, Arnaud, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA-California Institute of Technology (CALTECH), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and IMPEC - LATMOS
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2018
26. Evolved Gas Analyses of Sedimentary Rocks and Eolian Sediment in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Namib Dune
- Author
-
Sutter, B., McAdam, A. C., Mahaffy, P. R., Ming, D. W., Edgett, K. S., Rampe, E. B., Eigenbrode, J. L., Franz, H. B., Freissinet, C., Grotzinger, J. P., Steele, A., House, C. H., Archer, P. D., Malespin, C. A., Navarro-González, R., Stern, J. C., Bell, J. F., Calef, F. J., Gellert, R., Glavin, D. P., Thompson, L. M., and Yen, A. S.
- Abstract
The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H_2, SO_2, H_2S, NO, CO_2, CO, O_2 and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO_2 (160 ± 248 - 2373 ± 820 μgC_((CO2))/g), and CO (11 ± 3 - 320 ± 130 μgC(CO)/g) suggest organic-C is present in Gale Crater materials. Five samples evolved CO_2 at temperatures consistent with carbonate (0.32± 0.05 - 0.70± 0.1 wt.% CO_3). Evolved NO amounts to 0.002 ± 0.007 - 0.06 ± 0.03 wt.% NO_3. Evolution of O_2 suggests oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025 - 1.05 ± 0.44wt. % ClO_4) are present while SO_2 evolution indicates the presence of crystalline and/or poorly crystalline Fe- and Mg-sulfate and possibly sulfide. Evolved H_2O (0.9 ± 0.3 - 2.5 ± 1.6 wt.% H_2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H_2 and H_2S suggest reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, carbonate). SAM results coupled with CheMin mineralogical and APXS elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic-C to support a small microbial population.
- Published
- 2017
27. Young K-Ar gae of jarosite in the Mojave sample at Gale Crater, Mars
- Author
-
Martin, P. E., Farley, K. A., Cohen, B. A., Mahaffy, P. R., Malespin, C. A., Susanne Petra Schwenzer, Vasconcelos, P. M., Ming, D. W., Mcadam, A. C., and Navarro-Gonzales, R.
- Abstract
By combining the Sample Analysis at Mars (SAM) instrument’s capabilities with those of the alpha particle X-ray spectrometer (APXS) on the Curiosity rover, radiometric K-Ar ages and 3He, 21Ne, and 36Ar exposure ages have been measured on two samples as of sol 1430. The Cumberland mudstone was found to have a K-Ar age of 4.21 ± 0.35 Ga (all uncertainties here are reported in 1σ), consistent with crater-counting estimates of the surrounding terrains. A second geochronology experiment was undertaken on the potassium-rich Windjana sandstone, which resulted in the unreasonably young and unrepeatable ages of 627 ± 50 Ma and 1710 ± 110 Ma on two different aliquots. These results were attributed to incomplete Ar extraction arising from the coarse grainsize and Ar-retentive characteristics of sanidine, the major K-bearing mineral in the sample.Recently, a drilled bedrock sample from the Murray mudstone formation (termed Mojave 2) was found by the CheMin instrument to contain approximately 3.1 wt% jarosite. Jarosite is precipitated from acidic, sulfate-rich waters and is a suitable mineral for KAr dating. On a large scale, jarosite has been thought to signal the aridification of Mars and a shift towards a cold, dry environment. The small amount of jarosite in this sample prohibits generalization to a larger Martian context. However, since jarosite forms strictly through interaction with water, the K-Ar age of the jarosite in Mojave 2 puts a maximum age constraint on the last time liquid water was present at the sample site. By extension, it could also indicate the time of the very final stages of evaporation from the lake in Gale Crater.A two-step heating experiment was designed to obtain the K-Ar age of the jarosite, which accounts for about 20% of the K2O in the sample. The remainder of the K2O exists in plagioclase, an amorphous component, and possibly a small amount in K-bearing phyllosilicates.
- Published
- 2017
28. Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate
- Author
-
Farley, K.A., Martin, P., Archer, P.D., Jr., Atreya, S.K., Conrad, P.G., Eigenbrode, J.L., Fairén, A.G., Franz, H.B., Freissinet, C., Glavin, D.P., Mahaffy, P.R., Malespin, C., Ming, D.W., Navarro-Gonzalez, R., and Sutter, B.
- Published
- 2016
- Full Text
- View/download PDF
29. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
- Author
-
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Miller, Kristen, Summons, Roger E, Freissinet, C., Glavin, D. P., Mahaffy, P. R., Eigenbrode, J. L., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., McAdam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M.-P., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Miller, Kristen, Summons, Roger E, Freissinet, C., Glavin, D. P., Mahaffy, P. R., Eigenbrode, J. L., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., McAdam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., and Zorzano, M.-P.
- Abstract
The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.
- Published
- 2017
30. Discordant K-Ar and Young Exposure Dates for the Windjana sandstone, Kimberley, Gale Crater, Mars
- Author
-
Vasconcelos, P. M., Farley, K. A., Malespin, C. A., Mahaffy, P., Ming, D., McLennan, S. M., Hurowitz, J. A., and Rice, Melissa S.
- Abstract
K-Ar and noble gas surface exposure age measurements were carried out on the Windjana sandstone, Kimberley region, Gale Crater, Mars, by using the Sample Analysis at Mars instrument on the Curiosity rover. The sandstone is unusually rich in sanidine, as determined by CheMin X-ray diffraction, contributing to the high K_2O concentration of 3.09 ± 0.20 wt % measured by Alpha-Particle X-ray Spectrometer analysis. A sandstone aliquot heated to ~915°C yielded a K-Ar age of 627 ± 50 Ma. Reheating this aliquot yielded no additional Ar. A second aliquot heated in the same way yielded a much higher K-Ar age of 1710 ± 110 Ma. These data suggest incomplete Ar extraction from a rock with a K-Ar age older than 1710 Ma. Incomplete extraction at ~900°C is not surprising for a rock with a large fraction of K carried by Ar-retentive K-feldspar. Likely, variability in the exact temperature achieved by the sample from run to run, uncertainties in sample mass estimation, and possible mineral fractionation during transport and storage prior to analysis may contribute to these discrepant data. Cosmic ray exposure ages from ^3He and ^(21)Ne in the two aliquots are minimum values given the possibility of incomplete extraction. However, the general similarity between the ^3He (57 ± 49 and 18 ± 32 Ma, mean 30 Ma) and ^(21)Ne (2 ± 32 and 83 ± 24 Ma, mean 54 Ma) exposure ages provides no evidence for underextraction. The implied erosion rate at the Kimberley location is similar to that reported at the nearby Yellowknife Bay outcrop.
- Published
- 2016
31. A Two‐Step K‐Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters
- Author
-
Martin, P. E., primary, Farley, K. A., additional, Baker, M. B., additional, Malespin, C. A., additional, Schwenzer, S. P., additional, Cohen, B. A., additional, Mahaffy, P. R., additional, McAdam, A. C., additional, Ming, D. W., additional, Vasconcelos, P. M., additional, and Navarro‐González, R., additional
- Published
- 2017
- Full Text
- View/download PDF
32. First In Situ Wet Chemistry Experiment on Mars Using the SAM Instrument: MTBSTFA Derivatization on a Martian Mudstone
- Author
-
Freissinet, Caroline, Glavin, Daniel, Buch, A., Szopa, Cyril, Kashyap, S., Franz, H., Eigenbrode, Jennifer, Brinckerhoff, W., Navarro-González, R., Teinturier, Samuel, Malespin, C., Benito Prats, Mahaffy, Paul, NASA Goddard Space Flight Center (GSFC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Buch, Arnaud, and Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; These experiments represent the first successful MTBSTFA derivatization experiment on Mars. Several MTBSTFA reaction products were generated during reactions with the Cumberland mudstone sample at elevated temperatures, with some products containing mass fragments up to m/z 358. We are continuing anthe alysis of this interesting data set to identify these derivatization products that should shed additional light on the chemical nature of the organic matter present in the Cumberland mudstone.
- Published
- 2015
33. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars
- Author
-
Glavin, Daniel, Freissinet, Caroline, Mahaffy, Paul, Miller, K., Eigenbrode, J., Summons, R., Martin, M., Franz, H., Steele, A., Archer, D., Atreya, S., Brinckerhoff, W., Brunner, A., Buch, A., Cabane, Michel, Coll, Patrice, Conrad, P., Des Marais, D., Dworkin, J., Fairén, A., François, P., Grotzinger, J., Kashyap, S., Malespin, C., McAdam, Amy, Ming, D, Navarro-González, R., Pavlov, A., Squyres, S., Stern, J., Sumner, D., Sutter, B., Szopa, Cyril, Buch, Arnaud, NASA Goddard Space Flight Center (GSFC), Massachusetts Institute of Technology (MIT), NASA Johnson Space Center (JSC), NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Ecole Centrale Paris, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Cornell University [New York], California Institute of Technology (CALTECH), University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS), Universidad Nacional Autónoma de México (UNAM), University of California [Davis] (UC Davis), University of California, Jacobs Technology ESCG, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), University of California (UC), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), and Cornell University
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy [1]. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyl-dimethylsilyl)trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background [2]. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found [2]. After RN, Curiosity trav-eled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumber-land (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of ~20 wt% smectite clays [3], which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or mete-oritic organic compounds may be preserved in the mudstone [4]. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone [5].
- Published
- 2015
34. Light and variable 37 Cl/ 35 Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate
- Author
-
Farley, K.A., primary, Martin, P., additional, Archer, P.D., additional, Atreya, S.K., additional, Conrad, P.G., additional, Eigenbrode, J.L., additional, Fairén, A.G., additional, Franz, H.B., additional, Freissinet, C., additional, Glavin, D.P., additional, Mahaffy, P.R., additional, Malespin, C., additional, Ming, D.W., additional, Navarro-Gonzalez, R., additional, and Sutter, B., additional
- Published
- 2016
- Full Text
- View/download PDF
35. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
- Author
-
Freissinet, C., Glavin, D. P., Mahaffy, P. R., Miller, K. E., Eigenbrode, J. L., Summons, R. E., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., Mcadam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M. P., the MSL Science Team, Freissinet, C., Glavin, D. P., Mahaffy, P. R., Miller, K. E., Eigenbrode, J. L., Summons, R. E., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., Mcadam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M. P., and the MSL Science Team
- Abstract
The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.
- Published
- 2015
36. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
- Author
-
Petrology, Freissinet, C., Glavin, D. P., Mahaffy, P. R., Miller, K. E., Eigenbrode, J. L., Summons, R. E., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., Mcadam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M. P., the MSL Science Team, Petrology, Freissinet, C., Glavin, D. P., Mahaffy, P. R., Miller, K. E., Eigenbrode, J. L., Summons, R. E., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., ten Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin-Torres, F. J., Mcadam, A. C., Ming, D. W., Navarro-González, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M. P., and the MSL Science Team
- Published
- 2015
37. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars
- Author
-
Mahaffy, P. R., Webster, C. R., Stern, J. C., Brunner, A. E., Atreya, S. K., Conrad, P. G., Domagal-Goldman, S., Eigenbrode, J. L., Flesch, G. J., Christensen, L. E., Franz, H. B., Freissinet, C., Glavin, D. P., Grotzinger, J. P., Jones, J. H., Leshin, L. A., Malespin, C., McAdam, A. C., Ming, D. W., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pavlov, A. A., Steele, A., Trainer, M. G., Williford, K. H., Wray, J. J., Stipp, Susan Louise Svane, Mahaffy, P. R., Webster, C. R., Stern, J. C., Brunner, A. E., Atreya, S. K., Conrad, P. G., Domagal-Goldman, S., Eigenbrode, J. L., Flesch, G. J., Christensen, L. E., Franz, H. B., Freissinet, C., Glavin, D. P., Grotzinger, J. P., Jones, J. H., Leshin, L. A., Malespin, C., McAdam, A. C., Ming, D. W., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pavlov, A. A., Steele, A., Trainer, M. G., Williford, K. H., Wray, J. J., and Stipp, Susan Louise Svane
- Published
- 2015
38. LESSONS LEARNED FROM THE FULL CUP WET CHEMISTRY EXPERIMENT PERFORMED ON MARS WITH THE SAMPLE ANALYSIS AT MARS INSTRUMENT.
- Author
-
Millan, M3, Malespin, C. A., Freissinet, C., Glavin, D. P., Mahaffy, P. R., Buch, A., Szopa, C., Srivastava, A., Teinturier, S., Williams, A. J., McAdam, A., Coscia, D., Eigenbrode, J., Raaen, E., Dworkin, J., Navarro-Gonzalez, R., and Johnson, S. S.
- Subjects
WET chemistry ,CHEMISTRY experiments ,MARS (Planet) ,DRINKING cups - Published
- 2019
39. ATMOSPHERIC HISTORY AND SURFACE REDOX PROCESSES INFERRED FROM MSL AND MAVEN ISOTOPE RATIOS.
- Author
-
Mahafly, P R., Franz, H. B., Webster, C. R., Malespin, C., Atieya, S. K., Schwenzer, S. P., Stem, J. C., Pavlov, A. A., Martin, P. E., Farley, K. A., Navarro-Gonzalez, R., Benna, M., and Slipski, M.
- Subjects
ISOTOPES ,OXIDATION-reduction reaction - Published
- 2019
40. DETECTION OF LONG-CHAIN HYDROCARBONS ON MARS WITH THE SAMPLE ANALYSIS AT MARS (SAM) INSTRUMENT.
- Author
-
Freissinet, C., Glavin, D.P., Buch, A., Szopa, C., Teinturier, S., Archer, P. D., Williams, A. J., Williams, R., Millan, M., Steele, A., Navarro-Gonzalez, R., House, C. H., Malespin, C. A., and Mahaffy, P.
- Subjects
MARS (Planet) ,HYDROCARBONS ,WET chemistry ,HYDROCARBON analysis ,MASS spectrometry - Published
- 2019
41. CLAY MINERALS OF GLEN TORRIDON, MOUNT SHARP, GALE CRATER, MARS.
- Author
-
Bristow, T. F., Rampe, E. B., Grotzinger, J. P., Fox, V. K., Bennett, K. A., Yen, A. S., Vasavada, A. R., Vaniman, D. T., Tu, V., Treiman, A. H., Thorpe, M. T., Morrison, S. M., Morris, R. V., Ming, D. W., McAdam, A. C., Malespin, C. A., Mahaffy, P. R., Hazen, R. M., Gupta, S., and Downs, R. T.
- Subjects
GALE Crater (Mars) ,CLAY minerals ,MARS (Planet) ,KAOLINITE - Published
- 2019
42. IN SITU WET CHEMISTRY EXPERIMENT ON MARS USING THE SAMPLE ANALYSIS AT MARS (SAM) INSTRUMENT: "OPPORTUNISTIC DERIVATIZATION" TO INVESTIGATE ORGANICS IN A MARTIAN MUDSTONE.
- Author
-
Freissinet, C., Glavin, D. P., Buch, A., Szopa, C., Kashyap, S., Franz, H. B., Eigenbrode, J. L., Brinckerhoff, W. B., Navarro-González, R., Teinturier, S., Malespin, C. A., Prats, B. D., and Mahaffy, P. R.
- Subjects
CHEMISTRY experiments ,MARS (Planet) ,ORGANIC compounds ,GAS chromatography ,GAS chromatography/Mass spectrometry (GC-MS) - Published
- 2017
43. The Sample Analysis at Mars (SAM) Wet Chemistry Experiment.
- Author
-
Malespin, C. A., Freissinet, C., Mahaffy, P. R., Teinturier, S., Glavin, D. P., McAdam, A., Williams, R., Buch, A., Szopa, C., Cosica, D., Raaen, E., Johnson, C., Brinckerhoff, W., Prats, B., and Gonzales, R.
- Subjects
MARTIAN exploration ,DIMETHYLFORMAMIDE ,MASS spectrometry - Published
- 2017
44. YOUNG K-Ar AGE OF JAROSITE IN THE MOJAVE 2 SAMPLE AT GALE CRATER, MARS.
- Author
-
Martin, P.E., Farley, K. A., Cohen, B. A., Mahaffy, P. R., Malespin, C. A., Schwenzer, S. P., Vasconcelos, P. M., Ming, D. W., McAdam, A. C., and Navarro-Gonzalez, R.
- Subjects
MARTIAN craters ,MARTIAN exploration - Published
- 2017
45. REVISED 40Ar/14N FOR THE MARTIAN ATMOSPHERE BASED ON SAM CALIBRATION GAS CELL RESULTS.
- Author
-
Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Benna, M., Conrad, P. G., Eigenbrode, J. L., Freissinet, C., Manning, H. L. K., Prats, B. D., Raaen, E., and Wong, M. H.
- Subjects
MARTIAN atmosphere ,GASES - Published
- 2017
46. Application of TMAH thermochemolysis to the detection of nucleobases: Application to the MOMA and SAM space experiment.
- Author
-
He Y, Buch A, Morisson M, Szopa C, Freissinet C, Williams A, Millan M, Guzman M, Navarro-Gonzalez R, Bonnet JY, Coscia D, Eigenbrode JL, Malespin CA, Mahaffy P, Glavin DP, Dworkin JP, Lu P, and Johnson SS
- Subjects
- Gas Chromatography-Mass Spectrometry, Hot Temperature, Limit of Detection, Mars, Purines chemistry, Pyrimidinones chemistry, Pyrolysis, Space Flight instrumentation, Purines analysis, Pyrimidinones analysis
- Abstract
Thermochemolysis of seven nucleobases-adenine, thymine, uracil, cytosine, guanine, xanthine, and hypoxanthine-in tetramethylammonium hydroxide (TMAH) was studied individually by pyrolysis gas chromatography mass spectrometry in the frame of the Mars surface exploration. The analyses were performed under conditions relevant to the Sample Analysis at Mars (SAM) instrument of the Mars Curiosity Rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the ExoMars Rover. The thermochemolysis products of each nucleobase were identified and the reaction mechanisms studied. The thermochemolysis temperature was optimized and the limit of detection and quantification of each nucleobase were also investigated. Results indicate that 600°C is the optimal thermochemolysis temperature for all seven nucleobases. The methylated products trimethyl-adenine, 1, 3-dimethyl-thymine, 1, 3-dimethyl-uracil, trimethyl-cytosine, 1, 3, 7-trimethyl-xanthine (caffeine), and dimethyl-hypoxanthine, respectively, are the most stable forms of adenine, thymine, uracil, cytosine, guanine, and xanthine, and hypoxanthine in TMAH solutions. The limits of detection for adenine, thymine, and uracil were 0.075 nmol; the limits of detection for guanine, cytosine, and hypoxanthine were higher, at 0.40, 0.55, and 0.75 nmol, respectively. These experiments allowed to well constrain the analytical capabilities of the thermochemolysis experiments that will be performed on Mars to detect nucleobases., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
47. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars.
- Author
-
Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eigenbrode JL, Summons RE, Brunner AE, Buch A, Szopa C, Archer PD, Franz HB, Atreya SK, Brinckerhoff WB, Cabane M, Coll P, Conrad PG, Des Marais DJ, Dworkin JP, Fairén AG, François P, Grotzinger JP, Kashyap S, Ten Kate IL, Leshin LA, Malespin CA, Martin MG, Martin-Torres FJ, McAdam AC, Ming DW, Navarro-González R, Pavlov AA, Prats BD, Squyres SW, Steele A, Stern JC, Sumner DY, Sutter B, and Zorzano MP
- Abstract
The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C
2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles., Key Points: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.