12 results on '"KENT IRWIN"'
Search Results
2. The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
- Author
-
Mathew S. Madhavacheril, Frank J. Qu, Blake D. Sherwin, Niall MacCrann, Yaqiong Li, Irene Abril-Cabezas, Peter A. R. Ade, Simone Aiola, Tommy Alford, Mandana Amiri, Stefania Amodeo, Rui An, Zachary Atkins, Jason E. Austermann, Nicholas Battaglia, Elia Stefano Battistelli, James A. Beall, Rachel Bean, Benjamin Beringue, Tanay Bhandarkar, Emily Biermann, Boris Bolliet, J Richard Bond, Hongbo Cai, Erminia Calabrese, Victoria Calafut, Valentina Capalbo, Felipe Carrero, Anthony Challinor, Grace E. Chesmore, Hsiao-mei Cho, Steve K. Choi, Susan E. Clark, Rodrigo Córdova Rosado, Nicholas F. Cothard, Kevin Coughlin, William Coulton, Kevin T. Crowley, Roohi Dalal, Omar Darwish, Mark J. Devlin, Simon Dicker, Peter Doze, Cody J. Duell, Shannon M. Duff, Adriaan J. Duivenvoorden, Jo Dunkley, Rolando Dünner, Valentina Fanfani, Max Fankhanel, Gerrit Farren, Simone Ferraro, Rodrigo Freundt, Brittany Fuzia, Patricio A. Gallardo, Xavier Garrido, Jahmour Givans, Vera Gluscevic, Joseph E. Golec, Yilun Guan, Kirsten R. Hall, Mark Halpern, Dongwon Han, Ian Harrison, Matthew Hasselfield, Erin Healy, Shawn Henderson, Brandon Hensley, Carlos Hervías-Caimapo, J. Colin Hill, Gene C. Hilton, Matt Hilton, Adam D. Hincks, Renée Hložek, Shuay-Pwu Patty Ho, Zachary B. Huber, Johannes Hubmayr, Kevin M. Huffenberger, John P. Hughes, Kent Irwin, Giovanni Isopi, Hidde T. Jense, Ben Keller, Joshua Kim, Kenda Knowles, Brian J. Koopman, Arthur Kosowsky, Darby Kramer, Aleksandra Kusiak, Adrien La Posta, Alex Lague, Victoria Lakey, Eunseong Lee, Zack Li, Michele Limon, Martine Lokken, Thibaut Louis, Marius Lungu, Amanda MacInnis, Diego Maldonado, Felipe Maldonado, Maya Mallaby-Kay, Gabriela A. Marques, Jeff McMahon, Yogesh Mehta, Felipe Menanteau, Kavilan Moodley, Thomas W. Morris, Tony Mroczkowski, Sigurd Naess, Toshiya Namikawa, Federico Nati, Laura Newburgh, Andrina Nicola, Michael D. Niemack, Michael R. Nolta, John Orlowski-Scherer, Lyman A. Page, Shivam Pandey, Bruce Partridge, Heather Prince, Roberto Puddu, Federico Radiconi, Naomi Robertson, Felipe Rojas, Tai Sakuma, Maria Salatino, Emmanuel Schaan, Benjamin L. Schmitt, Neelima Sehgal, Shabbir Shaikh, Carlos Sierra, Jon Sievers, Cristóbal Sifón, Sara Simon, Rita Sonka, David N. Spergel, Suzanne T. Staggs, Emilie Storer, Eric R. Switzer, Niklas Tampier, Robert Thornton, Hy Trac, Jesse Treu, Carole Tucker, Joel Ullom, Leila R. Vale, Alexander Van Engelen, Jeff Van Lanen, Joshiwa van Marrewijk, Cristian Vargas, Eve M. Vavagiakis, Kasey Wagoner, Yuhan Wang, Lukas Wenzl, Edward J. Wollack, Zhilei Xu, Fernando Zago, and Kaiwen Zheng
- Subjects
Cosmology ,Observational cosmology ,Cosmic microwave background radiation ,Large-scale structure of the universe ,Cosmological neutrinos ,Particle astrophysics ,Astrophysics ,QB460-466 - Abstract
We present cosmological constraints from a gravitational lensing mass map covering 9400 deg ^2 reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitude σ _8 = 0.819 ± 0.015 at 1.8% precision, ${S}_{8}\equiv {\sigma }_{8}{({{\rm{\Omega }}}_{{\rm{m}}}/0.3)}^{0.5}=0.840\pm 0.028$ , and the Hubble constant H _0 = (68.3 ± 1.1) km s ^−1 Mpc ^−1 at 1.6% precision. A joint constraint with Planck CMB lensing yields σ _8 = 0.812 ± 0.013, ${S}_{8}\equiv {\sigma }_{8}{({{\rm{\Omega }}}_{{\rm{m}}}/0.3)}^{0.5}=0.831\pm 0.023$ , and H _0 = (68.1 ± 1.0) km s ^−1 Mpc ^−1 . These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find that S _8 from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7 σ to 2.1 σ . This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probing z ∼ 0.5–5 on mostly linear scales and galaxy lensing at z ∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑ m _ν < 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.
- Published
- 2024
- Full Text
- View/download PDF
3. The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth
- Author
-
Frank J. Qu, Blake D. Sherwin, Mathew S. Madhavacheril, Dongwon Han, Kevin T. Crowley, Irene Abril-Cabezas, Peter A. R. Ade, Simone Aiola, Tommy Alford, Mandana Amiri, Stefania Amodeo, Rui An, Zachary Atkins, Jason E. Austermann, Nicholas Battaglia, Elia Stefano Battistelli, James A. Beall, Rachel Bean, Benjamin Beringue, Tanay Bhandarkar, Emily Biermann, Boris Bolliet, J Richard Bond, Hongbo Cai, Erminia Calabrese, Victoria Calafut, Valentina Capalbo, Felipe Carrero, Julien Carron, Anthony Challinor, Grace E. Chesmore, Hsiao-mei Cho, Steve K. Choi, Susan E. Clark, Rodrigo Córdova Rosado, Nicholas F. Cothard, Kevin Coughlin, William Coulton, Roohi Dalal, Omar Darwish, Mark J. Devlin, Simon Dicker, Peter Doze, Cody J. Duell, Shannon M. Duff, Adriaan J. Duivenvoorden, Jo Dunkley, Rolando Dünner, Valentina Fanfani, Max Fankhanel, Gerrit Farren, Simone Ferraro, Rodrigo Freundt, Brittany Fuzia, Patricio A. Gallardo, Xavier Garrido, Vera Gluscevic, Joseph E. Golec, Yilun Guan, Mark Halpern, Ian Harrison, Matthew Hasselfield, Erin Healy, Shawn Henderson, Brandon Hensley, Carlos Hervías-Caimapo, J. Colin Hill, Gene C. Hilton, Matt Hilton, Adam D. Hincks, Renée Hložek, Shuay-Pwu Patty Ho, Zachary B. Huber, Johannes Hubmayr, Kevin M. Huffenberger, John P. Hughes, Kent Irwin, Giovanni Isopi, Hidde T. Jense, Ben Keller, Joshua Kim, Kenda Knowles, Brian J. Koopman, Arthur Kosowsky, Darby Kramer, Aleksandra Kusiak, Adrien La Posta, Alex Lague, Victoria Lakey, Eunseong Lee, Zack Li, Yaqiong Li, Michele Limon, Martine Lokken, Thibaut Louis, Marius Lungu, Niall MacCrann, Amanda MacInnis, Diego Maldonado, Felipe Maldonado, Maya Mallaby-Kay, Gabriela A. Marques, Jeff McMahon, Yogesh Mehta, Felipe Menanteau, Kavilan Moodley, Thomas W. Morris, Tony Mroczkowski, Sigurd Naess, Toshiya Namikawa, Federico Nati, Laura Newburgh, Andrina Nicola, Michael D. Niemack, Michael R. Nolta, John Orlowski-Scherer, Lyman A. Page, Shivam Pandey, Bruce Partridge, Heather Prince, Roberto Puddu, Federico Radiconi, Naomi Robertson, Felipe Rojas, Tai Sakuma, Maria Salatino, Emmanuel Schaan, Benjamin L. Schmitt, Neelima Sehgal, Shabbir Shaikh, Carlos Sierra, Jon Sievers, Cristóbal Sifón, Sara Simon, Rita Sonka, David N. Spergel, Suzanne T. Staggs, Emilie Storer, Eric R. Switzer, Niklas Tampier, Robert Thornton, Hy Trac, Jesse Treu, Carole Tucker, Joel Ullom, Leila R. Vale, Alexander Van Engelen, Jeff Van Lanen, Joshiwa van Marrewijk, Cristian Vargas, Eve M. Vavagiakis, Kasey Wagoner, Yuhan Wang, Lukas Wenzl, Edward J. Wollack, Zhilei Xu, Fernando Zago, and Kaiwen Zheng
- Subjects
Cosmological parameters ,Cosmological parameters from large-scale structure ,Astrophysics ,QB460-466 - Abstract
We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg ^2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43 σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A _lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A _lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination ${S}_{8}^{\mathrm{CMBL}}\equiv {\sigma }_{8}{\left({{\rm{\Omega }}}_{m}/0.3\right)}^{0.25}$ of ${S}_{8}^{\mathrm{CMBL}}=0.818\pm 0.022$ from ACT DR6 CMB lensing alone and ${S}_{8}^{\mathrm{CMBL}}=0.813\pm 0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.
- Published
- 2024
- Full Text
- View/download PDF
4. Chemical insights into silica growth on nanoscale diamond using multimodal characterization and simulation
- Author
-
Perla J. Sandoval, Karen Lopez, Andres Arreola, Anida Len, Pomaikaimaikalani Yamaguchi, Rina Kawamura, Camron X. Stokes, Cynthia Melendrez, Davida Simpson, Sang-Jun Lee, Charles Titus, Virginia Altoe, Sami Sainio, Dennis Nordlund, Kent Irwin, and Abraham Wolcott
- Abstract
Surface chemistry of materials that host quantum bits such as diamond are an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general, and nanoscale diamond (ND) in particular with silica is a potential route to integrate the quantum bit into a photonic device, fiber optic, cells or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2–35 nm thick shells of SiO2 onto carboxylic acid rich ND cores and the diamond features and surface structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions converts the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl-ether (ND-O-Si-(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor supports the chemical analysis provided by XAS. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed, and the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Researchers using high-pressure high temperature (HPHT) NDs or any alcohol-terminated material (metal oxides, oxidized silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new core-shell quantum sensors with base-catalyzed reactions and metal oxide precursors.
- Published
- 2023
- Full Text
- View/download PDF
5. The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
- Author
-
Didier Barret, Vincent Albouys, Jan-Willem den Herder, Luigi Piro, Massimo Cappi, Juhani Huovelin, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Noriko Yamasaki, Marc Audard, Simon Bandler, Marco Barbera, Xavier Barcons, Enrico Bozzo, Maria Teresa Ceballos, Ivan Charles, Elisa Costantini, Thomas Dauser, Anne Decourchelle, Lionel Duband, Jean-Marc Duval, Fabrizio Fiore, Flavio Gatti, Andrea Goldwurm, Roland den Hartog, Brian Jackson, Peter Jonker, Caroline Kilbourne, Seppo Korpela, Claudio Macculi, Mariano Mendez, Kazuhisa Mitsuda, Silvano Molendi, François Pajot, Etienne Pointecouteau, Frederick Porter, Gabriel W. Pratt, Damien Prêle, Laurent Ravera, Kosuke Sato, Joop Schaye, Keisuke Shinozaki, Konrad Skup, Jan Soucek, Tanguy Thibert, Jacco Vink, Natalie Webb, Laurence Chaoul, Desi Raulin, Aurora Simionescu, Jose Miguel Torrejon, Fabio Acero, Graziella Branduardi-Raymont, Stefano Ettori, Alexis Finoguenov, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Giovanni Miniutti, Fabrizio Nicastro, Salvatore Sciortino, Hiroya Yamaguchi, Sophie Beaumont, Edoardo Cucchetti, Matteo D’Andrea, Megan Eckart, Philippe Ferrando, Elias Kammoun, Simone Lotti, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Florence Ardellier, Andrea Argan, Elise Bellouard, Jérôme Carron, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Sylvain Martin, James Perry, Frederic Pinsard, Alice Pradines, Manuela Rigano, Peter Roelfsema, Denis Schwander, Guido Torrioli, Joel Ullom, Isabel Vera, Eduardo Medinaceli Villegas, Monika Zuchniak, Frank Brachet, Ugo Lo Cicero, William Doriese, Malcom Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Stephen Smith, Joseph Adams, Emilie Gloaguen, Ruud Hoogeveen, Paul van der Hulst, Mikko Kiviranta, Jan van der Kuur, Aurélien Ledot, Bert-Joost van Leeuwen, Dennis van Loon, Bertrand Lyautey, Yann Parot, Kazuhiro Sakai, Henk van Weers, Shariefa Abdoelkariem, Thomas Adam, Christophe Adami, Corinne Aicardi, Hiroki Akamatsu, Pablo Eleazar Merino Alonso, Roberta Amato, Jérôme André, Matteo Angelinelli, Manuel Anon-Cancela, Shebli Anvar, Ricardo Atienza, Anthony Attard, Natalia Auricchio, Ana Balado, Florian Bancel, Lorenzo Ferrari Barusso, Arturo Bascuñan, Vivian Bernard, Alicia Berrocal, Sylvie Blin, Donata Bonino, François Bonnet, Patrick Bonny, Peter Boorman, Charles Boreux, Ayoub Bounab, Martin Boutelier, Kevin Boyce, Daniele Brienza, Marcel Bruijn, Andrea Bulgarelli, Simona Calarco, Paul Callanan, Alberto Prada Campello, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Florent Castellani, Oscar Cheatom, James Chervenak, Fabio Chiarello, Laurent Clerc, Nicolas Clerc, Beatriz Cobo, Odile Coeur-Joly, Alexis Coleiro, Stéphane Colonges, Leonardo Corcione, Mickael Coriat, Alexandre Coynel, Francesco Cuttaia, Antonino D’Ai, Fabio D’anca, Mauro Dadina, Christophe Daniel, Lea Dauner, Natalie DeNigris, Johannes Dercksen, Michael DiPirro, Eric Doumayrou, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Valvanera Eiriz, Eric Ercolani, Christophe Etcheverry, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Philippe Franssen, Martin Frericks, Stefano Gabici, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Ma Angeles Alcacera Gil, Elisa Giovannini, Olivier Godet, Javier Gomez-Elvira, Raoul Gonzalez, Manuel Gonzalez, Luciano Gottardi, Dolorès Granat, Michel Gros, Nicolas Guignard, Paul Hieltjes, Adolfo Jesús Hurtado, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Maria Jiménez, Antoine Jolly, Thierry Jourdan, Sabine Julien, Bartosz Kedziora, Andrew Korb, Ingo Kreykenbohm, Ole König, Mathieu Langer, Philippe Laudet, Philippe Laurent, Monica Laurenza, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Bruno Maffei, Océane Maisonnave, Lorenzo Marelli, Didier Massonet, Irwin Maussang, Alejandro Gonzalo Melchor, Isabelle Le Mer, Francisco Javier San Millan, Jean-Pierre Millerioux, Teresa Mineo, Gabriele Minervini, Alexeï Molin, David Monestes, Nicola Montinaro, Baptiste Mot, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, Damien Pailot, Francesca Panessa, Luigi Parodi, Pascal Petit, Enrico Piconcelli, Ciro Pinto, Jose Miguel Encinas Plaza, Borja Plaza, David Poyatos, Thomas Prouvé, Andy Ptak, Simonetta Puccetti, Elena Puccio, Pascale Ramon, Manuel Reina, Guillaume Rioland, Louis Rodriguez, Anton Roig, Bertrand Rollet, Mauro Roncarelli, Gilles Roudil, Tomasz Rudnicki, Julien Sanisidro, Luisa Sciortino, Vitor Silva, Michael Sordet, Javier Soto-Aguilar, Pierre Spizzi, Christian Surace, Miguel Fernández Sánchez, Emanuele Taralli, Guilhem Terrasa, Régis Terrier, Michela Todaro, Pietro Ubertini, Michela Uslenghi, Jan Geralt Bij de Vaate, Davide Vaccaro, Salvatore Varisco, Peggy Varnière, Laurent Vibert, María Vidriales, Fabrizio Villa, Boris Martin Vodopivec, Angela Volpe, Cor de Vries, Nicholas Wakeham, Gavin Walmsley, Michael Wise, Martin de Wit, Grzegorz Woźniak, Barret, Didier, Albouys, Vincent, Herder, Jan-Willem den, Piro, Luigi, Cappi, Massimo, Huovelin, Juhani, Kelley, Richard, Mas-Hesse, J. Miguel, Paltani, Stéphane, Rauw, Gregor, Rozanska, Agata, Svoboda, Jiri, Wilms, Joern, Yamasaki, Noriko, Audard, Marc, Bandler, Simon, Barbera, Marco, Barcons, Xavier, Bozzo, Enrico, Ceballos, Maria Teresa, Charles, Ivan, Costantini, Elisa, Dauser, Thoma, Decourchelle, Anne, Duband, Lionel, Duval, Jean-Marc, Fiore, Fabrizio, Gatti, Flavio, Goldwurm, Andrea, Hartog, Roland den, Jackson, Brian, Jonker, Peter, Kilbourne, Caroline, Korpela, Seppo, Macculi, Claudio, Mendez, Mariano, Mitsuda, Kazuhisa, Molendi, Silvano, Pajot, Françoi, Pointecouteau, Etienne, Porter, Frederick, Pratt, Gabriel W., Prêle, Damien, Ravera, Laurent, Sato, Kosuke, Schaye, Joop, Shinozaki, Keisuke, Skup, Konrad, Soucek, Jan, Thibert, Tanguy, Vink, Jacco, Webb, Natalie, Chaoul, Laurence, Raulin, Desi, Simionescu, Aurora, Torrejon, Jose Miguel, Acero, Fabio, Branduardi-Raymont, Graziella, Ettori, Stefano, Finoguenov, Alexi, Grosso, Nicola, Kaastra, Jelle, Mazzotta, Pasquale, Miller, Jon, Miniutti, Giovanni, Nicastro, Fabrizio, Sciortino, Salvatore, Yamaguchi, Hiroya, Beaumont, Sophie, Cucchetti, Edoardo, D’Andrea, Matteo, Eckart, Megan, Ferrando, Philippe, Kammoun, Elia, Lotti, Simone, Mesnager, Jean-Michel, Natalucci, Lorenzo, Peille, Philippe, de Plaa, Jelle, Ardellier, Florence, Argan, Andrea, Bellouard, Elise, Carron, Jérôme, Cavazzuti, Elisabetta, Fiorini, Mauro, Khosropanah, Pourya, Martin, Sylvain, Perry, Jame, Pinsard, Frederic, Pradines, Alice, Rigano, Manuela, Roelfsema, Peter, Schwander, Deni, Torrioli, Guido, Ullom, Joel, Vera, Isabel, Villegas, Eduardo Medinaceli, Zuchniak, Monika, Brachet, Frank, Cicero, Ugo Lo, Doriese, William, Durkin, Malcom, Fioretti, Valentina, Geoffray, Hervé, Jacques, Lionel, Kirsch, Christian, Smith, Stephen, Adams, Joseph, Gloaguen, Emilie, Hoogeveen, Ruud, van der Hulst, Paul, Kiviranta, Mikko, van der Kuur, Jan, Ledot, Aurélien, van Leeuwen, Bert-Joost, van Loon, Denni, Lyautey, Bertrand, Parot, Yann, Sakai, Kazuhiro, van Weers, Henk, Abdoelkariem, Shariefa, Adam, Thoma, Adami, Christophe, Aicardi, Corinne, Akamatsu, Hiroki, Alonso, Pablo Eleazar Merino, Amato, Roberta, André, Jérôme, Angelinelli, Matteo, Anon-Cancela, Manuel, Anvar, Shebli, Atienza, Ricardo, Attard, Anthony, Auricchio, Natalia, Balado, Ana, Bancel, Florian, Barusso, Lorenzo Ferrari, Bascuñan, Arturo, Bernard, Vivian, Berrocal, Alicia, Blin, Sylvie, Bonino, Donata, Bonnet, Françoi, Bonny, Patrick, Boorman, Peter, Boreux, Charle, Bounab, Ayoub, Boutelier, Martin, Boyce, Kevin, Brienza, Daniele, Bruijn, Marcel, Bulgarelli, Andrea, Calarco, Simona, Callanan, Paul, Campello, Alberto Prada, Camus, Thierry, Canourgues, Florent, Capobianco, Vito, Cardiel, Nicola, Castellani, Florent, Cheatom, Oscar, Chervenak, Jame, Chiarello, Fabio, Clerc, Laurent, Clerc, Nicola, Cobo, Beatriz, Coeur-Joly, Odile, Coleiro, Alexi, Colonges, Stéphane, Corcione, Leonardo, Coriat, Mickael, Coynel, Alexandre, Cuttaia, Francesco, D’Ai, Antonino, D’anca, Fabio, Dadina, Mauro, Daniel, Christophe, Dauner, Lea, DeNigris, Natalie, Dercksen, Johanne, DiPirro, Michael, Doumayrou, Eric, Dubbeldam, Luc, Dupieux, Michel, Dupourqué, Simon, Durand, Jean Loui, Eckert, Dominique, Eiriz, Valvanera, Ercolani, Eric, Etcheverry, Christophe, Finkbeiner, Fred, Fiocchi, Mariateresa, Fossecave, Hervé, Franssen, Philippe, Frericks, Martin, Gabici, Stefano, Gant, Florent, Gao, Jian-Rong, Gastaldello, Fabio, Genolet, Ludovic, Ghizzardi, Simona, Gil, Ma Angeles Alcacera, Giovannini, Elisa, Godet, Olivier, Gomez-Elvira, Javier, Gonzalez, Raoul, Gonzalez, Manuel, Gottardi, Luciano, Granat, Dolorè, Gros, Michel, Guignard, Nicola, Hieltjes, Paul, Hurtado, Adolfo Jesú, Irwin, Kent, Jacquey, Christian, Janiuk, Agnieszka, Jaubert, Jean, Jiménez, Maria, Jolly, Antoine, Jourdan, Thierry, Julien, Sabine, Kedziora, Bartosz, Korb, Andrew, Kreykenbohm, Ingo, König, Ole, Langer, Mathieu, Laudet, Philippe, Laurent, Philippe, Laurenza, Monica, Lesrel, Jean, Ligori, Sebastiano, Lorenz, Maximilian, Luminari, Alfredo, Maffei, Bruno, Maisonnave, Océane, Marelli, Lorenzo, Massonet, Didier, Maussang, Irwin, Melchor, Alejandro Gonzalo, Le Mer, Isabelle, Millan, Francisco Javier San, Millerioux, Jean-Pierre, Mineo, Teresa, Minervini, Gabriele, Molin, Alexeï, Monestes, David, Montinaro, Nicola, Mot, Baptiste, Murat, David, Nagayoshi, Kenichiro, Nazé, Yaël, Noguès, Loïc, Pailot, Damien, Panessa, Francesca, Parodi, Luigi, Petit, Pascal, Piconcelli, Enrico, Pinto, Ciro, Plaza, Jose Miguel Encina, Plaza, Borja, Poyatos, David, Prouvé, Thoma, Ptak, Andy, Puccetti, Simonetta, Puccio, Elena, Ramon, Pascale, Reina, Manuel, Rioland, Guillaume, Rodriguez, Loui, Roig, Anton, Rollet, Bertrand, Roncarelli, Mauro, Roudil, Gille, Rudnicki, Tomasz, Sanisidro, Julien, Sciortino, Luisa, Silva, Vitor, Sordet, Michael, Soto-Aguilar, Javier, Spizzi, Pierre, Surace, Christian, Sánchez, Miguel Fernández, Taralli, Emanuele, Terrasa, Guilhem, Terrier, Régi, Todaro, Michela, Ubertini, Pietro, Uslenghi, Michela, de Vaate, Jan Geralt Bij, Vaccaro, Davide, Varisco, Salvatore, Varnière, Peggy, Vibert, Laurent, Vidriales, María, Villa, Fabrizio, Vodopivec, Boris Martin, Volpe, Angela, de Vries, Cor, Wakeham, Nichola, Walmsley, Gavin, Wise, Michael, de Wit, Martin, Woźniak, Grzegorz, Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Astronomía y Astrofísica, Agencia Estatal de Investigación (AEI), Ministerio de Ciencia e Innovación (MICINN), Centre National D'Etudes Spatiales (CNES), Agenzia Spaziale Italiana (ASI), European Space Agency (ESA), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), SRON Netherlands Institute for Space Research (SRON), Department of Physics [Helsinki], Falculty of Science [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Centrum Astronomiczne im. M. Kopernika, Warszawa (CAMK), Faculty of Civil Engineering [Prague] (FSV CTU), Czech Technical University in Prague (CTU), Columbia Astrophysics Laboratory (CAL), Columbia University [New York], NASA Goddard Space Flight Center (GSFC), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut d'astrophysique spatiale (IAS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
X-IFU: The X-ray Integral Field Unit ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,The X-ray Integral Field Unit [X-IFU] ,Solar and stellar astrophysics ,FOS: Physical sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Settore FIS/05 - Astronomia E Astrofisica ,X-rays ,SDG 7 - Affordable and Clean Energy ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics of Galaxies ,Athena: the advanced telescope for high energy astrophysics ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysical phenomena ,Space instrumentation ,Astrophysics - Solar and Stellar Astrophysics ,High energy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,the advanced telescope for high energy astrophysics [Athena] ,Athena: the advanced telescope for high energy astrophysics · X-IFU: The X-ray Integral Field Unit · Space instrumentation · X-rays · Observatory ,Observatory ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,SDG 12 - Responsible Consumption and Production ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged)., Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editing
- Published
- 2023
- Full Text
- View/download PDF
6. Projected sensitivity of DMRadio-m3 : A search for the QCD axion below 1 μeV
- Author
-
Kent Irwin, Lindley Winslow, and Kevin Wells
- Published
- 2022
- Full Text
- View/download PDF
7. Ultrathin boron templating on nanoscale diamond surfaces using trigonal boron precursors
- Author
-
Abraham Wolcott, Dennis Nordlund, Kent Irwin, Virginia Altoe, Grace Jeanpierre, Charles Titus, Lee Sang Jun, Cynthia Melendrez, Juan Miguel Del Rosario, Solomon Adjei II, Tyanna Supreme, Daniel N. Labunsky, Krishna Govindaraju, and Ezhioghode Uwadiale
- Published
- 2022
- Full Text
- View/download PDF
8. Exploiting the metastable brominated diamond surface for amine functionalization with linear, cyclic and branched amines
- Author
-
Abraham Wolcott, Kent Irwin, Dennis Nordlund, Charles Titus, Sang-Jun Lee, Halim Muhammad, Cynthia Melendrez, Jorge Lopez-Rosas, Grace Drew, Tsz Cheung, and Camron Stokes
- Published
- 2022
- Full Text
- View/download PDF
9. A Roadmap for Quantum Interconnects
- Author
-
David Awschalom, Hannes Bernien, Rex Brown, Aashish Clerk, Eric Chitambar, Alan Dibos, Jennifer Dionne, Mark Eriksson, Bill Fefferman, Greg Fuchs, Jay Gambetta, Elizabeth Goldschmidt, Supratik Guha, F. Heremans, Kent Irwin, Ania Jayich, Liang Jiang, Jonathan Karsch, Mark Kasevich, Shimon Kolkowitz, Paul Kwiat, Thaddeus Ladd, Jay Lowell, Dmitri Maslov, Nadya Mason, Anne Matsuura, Robert McDermott, Rod van Meter, Aaron Miller, Jason Orcutt, Mark Saffman, Monika Schleier-Smith, Manish Singh, Phil Smith, Martin Suchara, Farzam Toudeh-Fallah, Matt Turlington, Benjamin Woods, and Tian Zhong
- Published
- 2022
- Full Text
- View/download PDF
10. Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry
- Author
-
Cynthia Melendrez, Jorge A. Lopez-Rosas, Camron X. Stokes, Tsz Ching Cheung, Sang-Jun Lee, Charles James Titus, Jocelyn Valenzuela, Grace Jeanpierre, Halim Muhammad, Polo Tran, Perla Jasmine Sandoval, Tyanna Supreme, Virginia Altoe, Jan Vavra, Helena Raabova, Vaclav Vanek, Sami Sainio, William B. Doriese, Galen C. O’Neil, Daniel S. Swetz, Joel N. Ullom, Kent Irwin, Dennis Nordlund, Petr Cigler, and Abraham Wolcott
- Subjects
General Materials Science ,Physical and Theoretical Chemistry - Abstract
Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.
- Published
- 2022
11. BICEP/ Keck XIV: Improved constraints on axionlike polarization oscillations in the cosmic microwave background
- Author
-
Zeeshan Ahmed, Benjamin Racine, Colin Bischoff, Kent Irwin, Carole Tucker, George Halal, Paul Grimes, Jae Hwan Kang, King Lau, and Lingzhen Zeng
- Published
- 2022
- Full Text
- View/download PDF
12. A metastable brominated nanodiamond surface enables room temperature and catalysis-free amine chemistry
- Author
-
Cynthia Melendrez, Jorge Lopez-Rosas, Camron Stokes, Tsz Cheung, Sang-Jun Lee, Charles Titus, Jocelyn Valenzuela, Grace Jeanpierre, Halim Muhammad, Polo Tran, Perla Sandoval, Tyanna Supreme, Virginia Altoe, Jan Vavra, Helena Raabova, Vaclav Vanek, Sami Sainio, William Doriese, Galen O'Neil, Daniel Swetz, Joel Ullom, Kent Irwin, Dennis Nordlund, Petr Cigler, and Abraham Wolcott
- Abstract
Bromination of high-pressure high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming and most researchers simply use oxygen-terminated ND (alcohols and acids) as a reactive species. In this work, we transformed a tertiary alcohol-rich ND surface to an amine surface with 50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl-bromide moieties are highly labile on NDs and are metastable as previously found using density functional theory. The instability of the bromine terminated ND is explained by steric hindrance and poor surface energy stabilization. The strong leaving group properties of the alkyl-bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. The chemical lability of the brominated ND surface led to efficient amination with NH3•THF at 298 K, and a catalyst-free Sonogashira-type reaction with an alkyne-amine produced an 11-fold increase in amination rate. Overlapping spectroscopies under inert, temperature-dependent and open-air conditions provided unambiguous chemical assignments. Amine-terminated NDs and folic acid were conjugated using sulfo-NHS/EDC coupling reagents to form amide bonds, confirming that standard amine chemistry remains viable. This work supports that a robust pathway exists to activate a chemically inert diamond surface at room temperature, which broadens the pathways of bond formation when a reactive alkyl-bromide surface is prepared. The unique surface properties of brominated and aminated nanodiamond reported here are impactful to researchers who wish to chemically tune diamond for quantum sensing applications or as an electron source for chemical transformations.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.