1. Design and Synthesis of Self-Healable Superhydrophobic Coatings for Oil/Water Separation
- Author
-
Jing Luo, Biyun Wang, Ziwei Deng, Yanling Ma, Hanqing Ge, Bo Peng, Shaanxi Normal University, Jiangnan University, Department of Applied Physics, Aalto-yliopisto, and Aalto University
- Subjects
Materials science ,Aqueous solution ,Sonication ,Composite number ,Aqueous two-phase system ,Portable water purification ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,6. Clean water ,0104 chemical sciences ,Rubbing ,Chemical engineering ,Oil droplet ,Electrochemistry ,General Materials Science ,Oil water ,0210 nano-technology ,Spectroscopy - Abstract
The introduction of the self-healing function into superhydrophobic surfaces has recently raised increasing attention because it can renew the feature of the surface iteratively to a large extent to extend the service life span of the surface in practical applications. However, it still faces a great challenge on how to achieve this unique surface with a tunable self-healing function via an easy and effective way. Here, we propose a general, yet easily implemented strategy to endow a diversity of commercial substrates with self-healable superhydrophobic surfaces mainly relying on the collective use of the polydopamine (PDA) chemistry with a hydrophobic silane-octadecyltrimethoxysilane (ODTMS). Upon applying ultrasonication for 30 min to an alkaline aqueous solution comprising dopamine hydrochloride (DA) and ODTMS, ODTMS disperses into the aqueous phase as microdroplets, while DA polymerizes into PDA exclusively onto the micro-sized oil droplets, forming capsules with nanoroughness. In the presence of substrates, PDA also anchors these composite capsules onto substrates, resulting in hierarchical surfaces. ODTMS is detected abundantly on the hierarchical surfaces, leading to superhydrophobic surfaces. Remarkably, this superhydrophobicity is self-restorable at room temperature (e.g., days) once it is deteriorated by the air plasma or extremely acid/alkali treatment, and this self-restoration can be significantly accelerated via the heating (2 h) or rubbing (5 min) treatment. Generally, heating and rubbing are the valid ways to induce self-healing, which is speculated to accelerate the migration of hidden ODTMS from the capsules to the surfaces because of the minimization of the global surface-free energy. Benefiting from the self-healing superhydrophobicity, we devise oil/water separation using various surface-modified commercial fabrics, which exhibit a prolonged life span in applications and may further facilitate other usage in environmental remediation and water purification.
- Published
- 2021