1. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer
- Author
-
Nicholas D. Nguyen, Jason B. Fleming, Meifang Yu, Eugene J. Koay, Ya'an Kang, F. Anthony San Lucas, Sonal Gupta, Haoqiang Ying, Daniel Lin, Albert C. Koong, Cullen M. Taniguchi, Anirban Maitra, Jessica M. Molkentine, Tara N. Fujimoto, Joseph M. Herman, Conrad J. Fernandes, Amit Deorukhkar, and Yanqing Huang
- Subjects
0301 basic medicine ,Dynamins ,MFN2 ,Oxidative phosphorylation ,Biology ,Mitochondrion ,Mitochondrial Dynamics ,Oxidative Phosphorylation ,GTP Phosphohydrolases ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Pancreatic cancer ,Mitophagy ,medicine ,Animals ,Enzyme Inhibitors ,Dynamin ,Quinazolinones ,Mice, Knockout ,Cancer ,General Medicine ,medicine.disease ,Mitochondria ,Pancreatic Neoplasms ,Survival Rate ,Disease Models, Animal ,030104 developmental biology ,mitochondrial fusion ,030220 oncology & carcinogenesis ,Cancer research ,CRISPR-Cas Systems ,Leflunomide ,Research Article ,Carcinoma, Pancreatic Ductal - Abstract
Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth; however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to the oncogenicity of PDAC, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin-related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a 2-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared with vehicle. We found that the chief tumor-suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.
- Published
- 2019