1. Orthogonally additive polynomials on Banach function algebras
- Author
-
Armando R. Villena
- Subjects
Discrete mathematics ,Fourier algebra ,Applied Mathematics ,010102 general mathematics ,Banach space ,01 natural sciences ,010101 applied mathematics ,Banach function algebra ,Compact space ,Bounded variation ,Division algebra ,Locally compact space ,Composition algebra ,0101 mathematics ,Analysis ,Mathematics - Abstract
For a Banach function algebra A, we consider the problem of representing a continuous d-homogeneous polynomial P : A → X , where X is an arbitrary Banach space, that satisfies the property P ( f + g ) = P ( f ) + P ( g ) whenever f , g ∈ A are such that supp ( f ) ∩ supp ( g ) = ∅ . We show that such a polynomial can be represented as P ( f ) = T ( f d ) ( f ∈ A ) for some continuous linear map T : A → X for a variety of Banach function algebras such as the algebra of continuous functions C 0 ( Ω ) for any locally compact Hausdorff space Ω, the algebra of Lipschitz functions lip α ( K ) for any compact metric space K and α ∈ ] 0 , 1 [ , the Figa–Talamanca–Herz algebra A p ( G ) for some locally compact groups G and p ∈ ] 1 , + ∞ [ , the algebras A C ( [ a , b ] ) and B V C ( [ a , b ] ) of absolutely continuous functions and of continuous functions of bounded variation on the interval [ a , b ] . In the case where A = C n ( [ a , b ] ) , P can be represented as P ( f ) = ∑ T ( n 1 , … , n d ) ( f ( n 1 ) ⋯ f ( n d ) ) , where the sum is taken over ( n 1 , … , n d ) ∈ Z d with 0 ≤ n 1 ≤ … ≤ n d ≤ n , for appropriate continuous linear maps T ( n 1 , … , n d ) : C n − n d ( [ a , b ] ) → X .
- Published
- 2017
- Full Text
- View/download PDF