1. Simultaneous State Initialization and Gyroscope Bias Calibration in Visual Inertial aided Navigation
- Author
-
Davide Scaramuzza, Agostino Martinelli, Jacques Kaiser, Flavio Fontana, Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), Robotics and perception group [Zurich], Universität Zürich [Zürich] = University of Zurich (UZH), ANR-14-CE27-0009,VIMAD,navigation autonome des drones aériens avec la fusion des données visuels et inertielles(2014), University of Zurich, Martinelli, Agostino, and Appel à projets générique - navigation autonome des drones aériens avec la fusion des données visuels et inertielles - - VIMAD2014 - ANR-14-CE27-0009 - Appel à projets générique - VALID
- Subjects
autonomous mobile robots ,0209 industrial biotechnology ,Engineering ,1707 Computer Vision and Pattern Recognition ,optimisation ,2210 Mechanical Engineering ,quadrotor MAV ,Gyroscopes ,Initialization ,1702 Artificial Intelligence ,Linear systems ,02 engineering and technology ,Interval (mathematics) ,localization ,based navigation ,law.invention ,020901 industrial engineering & automation ,law ,mobile robots ,0202 electrical engineering, electronic engineering, information engineering ,closed ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,Computer vision ,inertial measurements ,Inertial navigation system ,ComputingMilieux_MISCELLANEOUS ,Visual-based navigation ,Visualization ,filter ,Linear system ,Gyroscope ,Cameras ,Computer Science Applications ,image features ,Closed-form solutions ,Calibration ,filtering theory ,020201 artificial intelligence & image processing ,visual ,Computer Vision and Pattern Recognition ,noisy sensors ,form solution ,optimization ,2606 Control and Optimization ,visual inertial aided navigation ,Control and Optimization ,10009 Department of Informatics ,Biomedical Engineering ,2207 Control and Systems Engineering ,2204 Biomedical Engineering ,000 Computer science, knowledge & systems ,1709 Human-Computer Interaction ,Artificial Intelligence ,Robot sensing systems ,1706 Computer Science Applications ,inertial navigation ,gyroscope bias calibration ,metric units ,sensor fusion ,form solutions ,micro aerial vehicles ,business.industry ,Mechanical Engineering ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,Filter (signal processing) ,Sensor fusion ,Human-Computer Interaction ,Control and Systems Engineering ,simultaneous state initialization ,space vehicles ,Artificial intelligence ,business ,monocular camera ,based algorithms - Abstract
International audience; State of the art approaches for visual-inertial sensor fusion use filter-based or optimization-based algorithms. Due to the nonlinearity of the system, a poor initialization can have a dramatic impact on the performance of these estimation methods. Recently, a closed-form solution providing such an initialization was derived in [1]. That solution determines the velocity (angular and linear) of a monocular camera in metric units by only using inertial measurements and image features acquired in a short time interval. In this letter, we study the impact of noisy sensors on the performance of this closed-form solution. We show that the gyroscope bias, not accounted for in [1], significantly affects the performance of the method. Therefore, we introduce a new method to automatically estimate this bias. Compared to the original method, the new approach now models the gyroscope bias and is robust to it. The performance of the proposed approach is successfully demonstrated on real data from a quadrotor MAV.
- Published
- 2016
- Full Text
- View/download PDF