1. Carbon dynamics driven by seawater recirculation and groundwater discharge along a forest-dune-beach continuum of a high-energy meso-macro-tidal sandy coast
- Author
-
Loris Deirmendjian, Dominique Poirier, Stéphane Bujan, Alfonso Mucci, Pierre Anschutz, Céline Charbonnier, Pascal Lecroart, Gwenaël Abril, Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Universidade Federal Fluminense [Rio de Janeiro] (UFF), McGill University = Université McGill [Montréal, Canada], Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
- Subjects
tidal beach ,010504 meteorology & atmospheric sciences ,Groundwater flow ,[SDE.MCG]Environmental Sciences/Global Changes ,Intertidal zone ,submarine groundwater discharge ,Aquifer ,010501 environmental sciences ,01 natural sciences ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Dissolved organic carbon ,Aquitaine coast ,Groundwater discharge ,14. Life underwater ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,aerobic benthic respiration ,6. Clean water ,Submarine groundwater discharge ,subterranean estuary ,Oceanography ,13. Climate action ,Environmental science ,Seawater ,CO2 degassing ,Groundwater - Abstract
International audience; High-energy tidal beaches are exposed to strong physical forcings. The submarine groundwater discharge (SGD) that occurs in intertidal sandy sediments includes both terrestrial, fresh groundwater flow and seawater recirculation, and plays a significant role in regulating biogeochemical cycles in some coastal zones. In this transition zone between land and sea, complex biogeochemical reactions alter the chemical composition of pore waters that discharge to the coastal ocean. Recent studies highlight that SGD can be a significant source of carbon to the coastal ocean but very few have investigated SGD in high-energy environments. We have characterized the dissolved carbon dynamics in such a high-energy environment (Truc Vert Beach, SW France) through pore water sampling in key compartments of the SGD system. Dissolved organic carbon (DOC), pH, total alkalinity (TA), and the isotopic composition of dissolved inorganic carbon (d 13 C-DIC) were measured in pore waters sampled at regular intervals between 2011 and 2014 in the intertidal zone of the beach, the mixing zone of the subterranean estuary (STE), and the freshwater aquifer upstream from the beach. Results reveal that SGD exports dissolved carbon mostly as DIC to the Aquitaine coast some of which originates from the aerobic respiration of marine organic matter within the beach aquifer. This is highlighted by the opposite spatial trend of DOC, which is consumed, and DIC, which is produced. Saline pore waters expelled from the beach through tidally-driven recirculation of seawater provide about 4400 tons of carbon per year to the coastal zone of the 240 km-long Aquitaine sandy coast. Terrestrial groundwater, characterized by high pCO2 values, is also a significant contributor to the DIC flux to the coastal ocean (16200 tons per year). This flux is abated by CO2 evasion in the upper beach, at the onset of the salinity gradient in the STE, and within the surficial freshwater aquifer along the forest-beach transect below the coastal foredune. Accordingly, the DIC:TA ratio evolves to below 1, suggesting that this SGD increases the buffer capacity of coastal seawater against acidification. This study demonstrates that high-energy beaches are active vectors of DIC from the land to the coastal ocean as well as significant sources of CO2 to the atmosphere, and must therefore be taken into consideration in SGD carbon budgets.
- Published
- 2021
- Full Text
- View/download PDF