1. Dynamic inking of large-scale stamps for multiplexed microcontact printing and fabrication of cell microarrays
- Author
-
Foncy, Julie, Estève, Aurore, Degache, Amélie, Colin, Camille, Dollat, Xavier, Cau, Jean-Christophe, Vieu, Christophe, Trévisiol, Emmanuelle, Malaquin, Laurent, Service Instrumentation Conception Caractérisation (LAAS-I2C), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Équipe Ingénierie pour les sciences du vivant (LAAS-ELIA), Innopsys [Carbonne], Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Imaging Techniques ,Microarrays ,Microfluidics ,Materials Science ,Equipment ,lcsh:Medicine ,Biosensing Techniques ,Fluid Mechanics ,Research and Analysis Methods ,Continuum Mechanics ,Fluorescence Imaging ,Cell Adhesion ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,lcsh:Science ,Cell Shape ,Materials by Attribute ,Flow Rate ,Extracellular Matrix Proteins ,Physics ,lcsh:R ,Classical Mechanics ,Biology and Life Sciences ,Fluid Dynamics ,Laboratory Glassware ,Cell Biology ,Microfluidic Analytical Techniques ,Laboratory Equipment ,Bioassays and Physiological Analysis ,Manufacturing Processes ,Tissue Array Analysis ,Physical Sciences ,Magnets ,Printing ,Engineering and Technology ,lcsh:Q ,Fluidics ,Research Article - Abstract
International audience; Microcontact printing has become a versatile soft lithography technique used to produce molecular micro-and nano-patterns consisting of a large range of different biomolecules. Despite intensive research over the last decade and numerous applications in the fields of biosensors, microarrays and biomedical applications, the large-scale implementation of microcontact printing is still an issue. It is hindered by the stamp-inking step that is critical to ensure a reproducible and uniform transfer of inked molecules over large areas. This is particularly important when addressing application such as cell microarray manufacturing, which are currently used for a wide range of analytical and pharmaceutical applications. In this paper, we present a large-scale and multiplexed microcontact printing process of extra-cellular matrix proteins for the fabrication of cell microarrays. We have developed a micro-fluidic inking approach combined with a magnetic clamping technology that can be adapted to most standard substrates used in biology. We have demonstrated a significant improvement of homogeneity of printed protein patterns on surfaces larger than 1 cm 2 through the control of both the flow rate and the wetting mechanism of the stamp surface during micro-fluidic inking. Thanks to the reproducibility and integration capabilities provided by microflui-dics, we have achieved the printing of three different adhesion proteins in one-step transfer. Selective cell adhesion and cell shape adaptation on the produced patterns were observed, showing the suitability of this approach for producing on-demand large-scale cell microarrays.
- Published
- 2018