1. Acceleration of PageRank with customized precision based on mantissa segmentation
- Author
-
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors, European Commission, U.S. Department of Energy, Agencia Estatal de Investigación, Helmholtz Association of German Research Centers, Gruetzmacher, Thomas, Cojean, Terry, Flegar, Goran, Anzt, Hartwig, Quintana-Orti, Enrique S., Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors, European Commission, U.S. Department of Energy, Agencia Estatal de Investigación, Helmholtz Association of German Research Centers, Gruetzmacher, Thomas, Cojean, Terry, Flegar, Goran, Anzt, Hartwig, and Quintana-Orti, Enrique S.
- Abstract
[EN] We describe the application of a communication-reduction technique for the PageRank algorithm that dynamically adapts the precision of the data access to the numerical requirements of the algorithm as the iteration converges. Our variable-precision strategy, using a customized precision format based on mantissa segmentation (CPMS), abandons the IEEE 754 single- and double-precision number representation formats employed in the standard implementation of PageRank, and instead handles the data in memory using a customized floating-point format. The customized format enables fast data access in different accuracy, prevents overflow/underflow by preserving the IEEE 754 double-precision exponent, and efficiently avoids data duplication, since all bits of the original IEEE 754 double-precision mantissa are preserved in memory, but re-organized for efficient reduced precision access. With this approach, the truncated values (omitting significand bits), as well as the original IEEE double-precision values, can be retrieved without duplicating the data in different formats. Our numerical experiments on an NVIDIA V100 GPU (Volta architecture) and a server equipped with two Intel Xeon Platinum 8168 CPUs (48 cores in total) expose that, compared with a standard ieee double-precision implementation, the CPMS-based PageRank completes about 10% faster if high-accuracy output is needed, and about 30% faster if reduced output accuracy is acceptable.
- Published
- 2020