1. Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery
- Author
-
Clément Mallet, Sébastien Giordano, Nicolas David, Institut National de l'Information Géographique et Forestière [IGN] (IGN), Laboratoire sciences et technologies de l'information géographique (LaSTIG), Ecole des Ingénieurs de la Ville de Paris (EIVP)-École nationale des sciences géographiques (ENSG), Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Université Gustave Eiffel-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Université Gustave Eiffel, Agence de Services et de Paiements, and ANR-18-CE23-0023,MAESTRIA,Analysis d'images multi-modales d'observation de la Terre(2018)
- Subjects
LPIS ,010504 meteorology & atmospheric sciences ,Scale (ratio) ,0211 other engineering and technologies ,02 engineering and technology ,01 natural sciences ,Identification system ,Crop ,Country level ,optical ,Earth and Planetary Sciences (miscellaneous) ,operational system ,Electrical and Electronic Engineering ,Sentinel ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,2. Zero hunger ,business.industry ,Environmental resource management ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,country scale ,crops ,Land parcel ,classification ,[SDE]Environmental Sciences ,Environmental science ,time series ,business ,Common Agricultural Policy ,SAR - Abstract
International audience; In this paper, we propose an operational solution for the yearly classification of crop parcels at national scale (namely France) for Land Parcel Identification System updating, under the Common Agricultural Policy (CAP) open-source framework and fed with both time series of Sentinel-1 radar and Sentinel-2 optical images, with complementary contributions. Three conceivable scenarios are investigated with two sets of nomenclatures (17 and 43 classes): early, on-line, and late classifications. Experiments performed on 2017 show very satisfactory results (82–97%), locally almost on-par with state-of-the-art deep-based methods. We can conclude our framework offers a strong basis for country-scale operational deployment for 2020+CAP.
- Published
- 2021