1. Innovative Joint for Cable Dome Structure Based on Topology Optimization and Additive Manufacturing
- Author
-
Mijia Yang, Liming Zhu, Hui Wang, Wenfeng Du, Yannan Zhao, Yingqi Wang, Runqi Hao, Henan University, Kaifeng, Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), North Dakota State University (NDSU), National Science Foundation in China (NSFC) National Natural Science Foundation of China (NSFC) [U1704141], Foundation of Zhejiang Provincial Key Laboratory of Space Structures [202106], Henan University, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
Technology ,Computer science ,Mechanical engineering ,020101 civil engineering ,02 engineering and technology ,Article ,0201 civil engineering ,law.invention ,[SPI]Engineering Sciences [physics] ,Dome (geology) ,Software ,law ,General Materials Science ,cable dome structure ,Joint (geology) ,smooth treatment ,topology optimization ,Microscopy ,QC120-168.85 ,Fused deposition modeling ,business.industry ,Topology optimization ,QH201-278.5 ,Process (computing) ,021001 nanoscience & nanotechnology ,Engineering (General). Civil engineering (General) ,TK1-9971 ,Descriptive and experimental mechanics ,support joint ,Workbench ,Electrical engineering. Electronics. Nuclear engineering ,TA1-2040 ,0210 nano-technology ,business ,additive manufacturing ,Smoothing - Abstract
International audience; Aiming at the problems of a low material utilization rate and uneven stress distribution of cast-steel support joints in cable dome structures, topology optimization and additive manufacturing methods are used for optimization design and integrated manufacturing. First, the basic principle and calculation process of topology optimization are briefly introduced. Then, the initial model of the support joint is calculated and analyzed by using the universal software ANSYS Workbench 2020R2 and Altair OptiStruct, and the optimized joint is imported into Discovery Live to smooth the surface. The static behaviors of three types of joints (topology-optimized joints, joints after the smoothing treatment, and joints from practical engineering) are compared and analyzed. Finally, the joints are printed by using fused deposition modeling (FDM) technology and laser-based powder bed fusion (LBPBF) technology in additive manufacturing. The results show that the new support joint in the cable dome structure obtained by the topology optimization method has the advantages of a novel shape, a high material utilization rate, and a uniform stress distribution. Additive manufacturing technology can allow the manufacture of complex shape components with high precision and high speed. The combination of topology optimization and additive manufacturing effectively realizes the advanced design and integrated manufacturing of support joints for cable dome structures.
- Published
- 2021
- Full Text
- View/download PDF