1. Electrical Sensor Calibration by Fuzzy Clustering with Mandatory Constraint
- Author
-
Shihong Yue, Keyi Fu, Liping Liu, and Yuwei Zhao
- Subjects
sensor ,electrical tomography ,calibration ,mandatory constraint ,fuzzy clustering ,Chemical technology ,TP1-1185 - Abstract
Electrical tomography sensors have been widely used for pipeline parameter detection and estimation. Before they can be used in formal applications, the sensors must be calibrated using enough labeled data. However, due to the high complexity of actual measuring environments, the calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can generally decrease the error of labeling data in any sensor calibration process.
- Published
- 2024
- Full Text
- View/download PDF