1. Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance
- Author
-
Subhajit Guha, Christian Walczyk, Christian Wenger, Brice Gautier, Mirko Fraschke, Philippe Hamoumou, Eduardo Perez, Francesco Santoni, Thomas Schroeder, Pauline Calka, Gang Niu, Lambert Alff, Aldo Di Carlo, Matthias Auf der Maur, INL - Hétéroepitaxie et Nanostructures ( INL - H&N ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), IHP Frankfurt, INL - Plateforme Technologique Nanolyon ( INL - Nanolyon ), HYCHICO, Laboratoire de Spectronomie Moléculaire ( SMIL ), Université de Bourgogne ( UB ), Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] ( INFN ), Istituto Nazionale di Fisica Nucleare, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Innovations for High Performance Microelectronics (IHP), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Dispositifs Electroniques (INL - DE), Leibniz institute for innovative microelectronics [Frankfurt (Oder)] (IHP), and Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] (INFN)
- Subjects
Materials science ,chemistry.chemical_element ,02 engineering and technology ,Settore ING-INF/01 - Elettronica ,01 natural sciences ,Article ,Protein filament ,[SPI]Engineering Sciences [physics] ,Reliability (semiconductor) ,0103 physical sciences ,[ SPI ] Engineering Sciences [physics] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical conductor ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Multidisciplinary ,business.industry ,Conductive atomic force microscopy ,021001 nanoscience & nanotechnology ,Resistive random-access memory ,chemistry ,Electrode ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,Tin ,business ,Current density - Abstract
Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the “OFF” state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.
- Published
- 2016
- Full Text
- View/download PDF