1. Synthesis of azafluoranthenes by iridium-catalyzed [2 + 2 + 2] cycloaddition and evaluation of their fluorescence properties
- Author
-
Takahiro Sawano, Kaho Takamura, Tomoka Yoshikawa, Kayo Murata, Marina Koga, Risa Yamada, Takahide Saito, Kazumasa Tabata, Yugo Ishii, Wataru Kashihara, Tatsuya Nishihara, Kazuhito Tanabe, Tadashi Suzuki, and Ryo Takeuchi
- Subjects
Cycloaddition Reaction ,Nitriles ,Organic Chemistry ,Solvents ,Humans ,Amines ,Physical and Theoretical Chemistry ,Iridium ,Biochemistry ,Catalysis - Abstract
We report a method for the synthesis of azafluoranthenes under neutral reaction conditions in a highly atom-economical manner by the iridium-catalyzed [2 + 2 + 2] cycloaddition of 1,8-dialkynylnaphthalenes with nitriles. A variety of nitriles react with methyl- or phenyl-substituted 1,8-dialkynylnaphthalenes to give a wide range of azafluoranthenes. Azafluoranthenes bearing an amino group show intense fluorescence at around 500 nm. Comparison of the fluorescence properties of amine-substituted azafluoranthenes with related compounds revealed the importance of the amine moiety for obtaining a high fluorescence quantum yield. The choice of the solvent affected the emission maxima and the fluorescence quantum yield. Azafluoranthenes bearing pyrrolidine exhibited blue-shifted emission bands in a non-polar solvent and gave a fluorescence quantum yield of 0.76 in toluene. A Lippert-Mataga plot and computational studies provide insight into the origin of the fluorescence of azafluoranthenes. Furthermore, cellular experiments using human breast adenocarcinoma cells SK-BR-3 demonstrated the feasibility of using azafluoranthenes as fluorescent probes.
- Published
- 2023
- Full Text
- View/download PDF