1. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions
- Author
-
Gordon K. Murdoch, Mathieu St-Louis, Charles T. Putman, Pamela McDonald, Walter T. Dixon, Karen J. B. Martins, Robin N. Michel, and Ian M. MacLean
- Subjects
medicine.medical_specialty ,education.field_of_study ,biology ,Physiology ,Population ,Skeletal muscle ,Cell biology ,Nitric oxide synthase ,Dephosphorylation ,Endocrinology ,medicine.anatomical_structure ,GSK-3 ,Internal medicine ,Myosin ,medicine ,biology.protein ,Phosphorylation ,Signal transduction ,education - Abstract
The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering L-NAME (0.75 mg ml(−1)) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day(−1)) of rat fast-twitch muscles (L+Stim; n = 30) and outcomes were compared with control rats receiving only CLFS (Stim; n = 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling.
- Published
- 2012