Questa tesi si occupa di una classe particolare di liotropici: i cristalli liquidi cromatici (CLCs). Essi in fase nematica godono della simmetria testa-coda, cioè sono materiali non chirali con una tendenza dei loro elementi costitutivi a raggrupparsi in modo da poter definire un direttore su scala mesoscopica che non ha polarità. Lo stato fondamentale dei cristalli liquidi nematici ordinari è raggiunto quando il direttore è uniforme nello spazio. Quando i CLCs sono confinati in capillari cilindrici con condizioni al contorno degeneri, si osserva che acquisiscono una configurazione non uniforme. In particolare, il loro stato fondamentale nel capillare cilindrico, spesso indicato come 'escaped twist' (ET), consiste in due configurazioni simmetriche di opposta chiralità, ognuna che si verifica con la stessa probabilità come ci si aspetta dalla mancanza di chiralità negli aggregati molecolari che costituiscono questi materiali. Nonostante la chiara indicazione che i CLCs nello spazio tridimensionale mostrano un comportamento diverso dai comuni cristalli liquidi nematici, la teoria di Oseen-Frank per i nematici è stata applicata per razionalizzare gli esperimenti con i capillari e quindi per determinare la configurazione dello stato fondamentale ET. Si tratta di una teoria variazionale che postula una densità di energia libera quadratica nel gradiente del direttore che penalizza tutte le distorsioni dall'allineamento uniforme. Classicamente vengono identificate quattro distorsioni, che corrispondono a quattro costanti elastiche indipendenti; si tratta delle costanti splay K_{11}, twist K_{22}, bend K_{33}, e saddle-splay K_{24}. Le disuguaglianze di Ericksen assicurano che la densità di energia di Frank sia positiva definita, e l'emergere spontaneo della chiralità non è concepibile quando sono valide. Così, la teoria elastica di Frank giustifica le configurazioni osservate dei CLCs sotto confinamento cilindrico solo se la disuguaglianza di Ericksen pertinente, K_{22}>=K_{24}, è violata, e quindi solo se l'energia libera funzionale di Frank è illimitata dal basso nello spazio euclideo 3D. Infatti, la configurazione che assumono è di equilibrio solo se questa disuguaglianza è violata. La forma alternativa della densità di energia libera di Oseen-Frank proposta da Selinger distribuisce il contributo del saddle-splay negli altri modi elastici. Così facendo, la torsione pura corrisponde qui alla costante elastica K_{22}-K_{24} (invece che solo K_{22} nella formulazione precedente) e viene chiamata double-twist, poiché non ha una direzione caratteristica nel piano perpendicolare al direttore. La negatività di (K_{22}-K_{24}) suggerisce che la configurazione di double-twist pura, la configurazione che eccita solo il modo double-twist, è lo stato fondamentale dei CLCs nello spazio 3D. Questo partciolare campo di direttori non appartiene a nessuna delle famiglie di direttori uniformi; è possibile solo lungo una curva 1D e produce frustrazione elastica se si richiede di occupare una particolare geometria con particolari condizioni al contorno. Estendere quindi il double twist a una regione tubolare introduce per necessità una trama non uniforme che risulta dalla combinazione di altri modi di deformazione fondamentali con il double-twist puro solo lungo l'asse del cilindro. Questa è esattamente la configurazione osservata sperimentalmente per i CLCs in capillari cilindrici soggetti a condizioni al contorno degeneri. Assumento che lo stato fondamentale dei CLCs è una caratteristica doppia torsione, diciamo che il cosiddetto stato fondamentale ET è in realtà uno `pseudo stato fondamentale', poiché è il risultato dell'estensione indotta dal confinamento della configurazione di double-twist, che inietta una frustrazione elastica nel sistema. Quali sono le problematiche dovute all'applicazione della teoria elastica di Frank ai CLCs? Perché abbiamo bisogno di una nuova teoria elastica? This dissertation is concerned with a peculiar class of lyotropics: chromatic liquid crystals (CLCs). Chromonics in the nematic phase enjoy the head-tail symmetry, that is, they are non-chiral materials with a tendency for their constitutive to bundle together so that a director can be defined at a mesoscopic scale which lacks polarity. The ground state of ordinary nematic liquid crystals is attained when the director is uniform in space. When CLCs are confined in capillary cylinders with degenerate boundary conditions that would be compatible with the uniform alignment of the director along the cylinder's axis, they are observed to acquire a nonuniform arrangement instead. Expecially, their ground state in cylindrical capillary, often referred to as escaped twist (ET) ground state, is two-fold; it consists of two symmetric twisted configurations (left- and right-handed), each variant occurring with the same likelihood, as was to be expected from the lack of chirality in the molecular aggregates that constitute these materials. Despite the clear indication that CLCs in three-dimensional space exhibit a different behavior from common nematic liquid crystals, the Oseen-Frank theory for nematics has been applied to rationalize the experiments with capillary tubes and so to determine the configuration of the ET ground state. This is a variational theory which posits a free energy density quadratic in the director gradient that penalizes all distortions of the director away from the unifom alignment. Four basic distortions are classically identified, which correspond to four independent elastic constants; these are the splay K_{11}, twist K_{22}, bend K_{33}, and saddle-splay K_{24} constants, which have recently been re-interpreted in a new light by Selinger. Ericksen's inequalities ensure that Frank's energy density is positive definite, and the spontaneous emergence of chirality in the nematic texture is not conceivable when they hold. Thus, Frank's elastic theory justifies the observed configurations of CLCs under cylindrical confinement only if the relevant Ericksen's inequality, K_{22}>=K_{24}$, is violated, and so only if Frank's free energy functional is unbounded below in 3D Euclidean space. Ideed, the configuration they fall in is an equilibrium one only if this inequality is violated. The alternative form of the Oseen-Frank free energy density proposed by Selinger distributes the saddle-splay contribution in the other elastic modes. In so doing, the pure twist here corresponds to the elastic constant K_{22}-K_{24} (instead of only K_{22} in the previous formulation) and it is termed double twist, as it has no characteristic direction in the plane perpenditular to the director. The negativity of (K_{22}-K_{24}) suggests that the pure double-twisted configuration, the director configuration exiciting only the double twist mode, is the gound state of CLCs in 3D space. This peculiar director field belongs to neither of the families of uniform director; it is only possible along a 1D curve and produces elastic frustration if requested to occupy a particular geometry with particular boundary conditions. As a result, exending the ideal double twisted texture to a tubolar region introduces by necessity a non uniform texture which results from the combination of other fundamental deformation modes with pure double twist only along the axis of the cylinder. This is exatly the configuration experimentally observed for CLCs in cylidrical capillaries subject to degenerate boundary conditions. Taken for granted that the ground state of CLCs is a characteristic double-twist, we say that the so called escaped-twist ground state actually is a `pseudo-ground state' since it is the result of the confinement-induced extension of the pure double twist, which injects a elastic frustration in the system. What is wrong with the application of Frank's elastic theory to CLCs? Why do we need a new elastic theory for them?