1. Wavenumber-explicit stability and convergence analysis of hp finite element discretizations of Helmholtz problems in piecewise smooth media
- Author
-
Bernkopf, M., Chaumont-Frelet, T., Melenk, J. M., Fakultät für Mathematik und Geoinformation [Wien] (TU Wien), Vienna University of Technology (TU Wien), Modélisation et méthodes numériques pour le calcul d'interactions onde-matière nanostructurée (ATLANTIS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire Jean Alexandre Dieudonné (LJAD), and Chaumont-Frelet, Théophile
- Subjects
Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Numerical Analysis (math.NA) ,Mathematics - Numerical Analysis ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis of PDEs (math.AP) - Abstract
We present a wavenumber-explicit convergence analysis of the hp finite element method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber $k$. Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.
- Published
- 2022