1. Germline ERCC excision repair 6 like 2 ( <scp> ERCC6L2 </scp> ) mutations lead to impaired erythropoiesis and reshaping of the bone marrow microenvironment
- Author
-
Hannah Armes, Findlay Bewicke‐Copley, Ana Rio‐Machin, Doriana Di Bella, Céline Philippe, Anna Wozniak, Hemanth Tummala, Jun Wang, Teresa Ezponda, Felipe Prosper, Inderjeet Dokal, Tom Vulliamy, Outi Kilpivaara, Ulla Wartiovaara‐Kautto, Jude Fitzgibbon, Kevin Rouault‐Pierre, Department of Medical and Clinical Genetics, ATG - Applied Tumor Genomics, Research Programs Unit, University of Helsinki, HUSLAB, Medicum, HUS Comprehensive Cancer Center, Clinicum, Helsinki University Hospital Area, and Hematologian yksikkö
- Subjects
mesenchymal cells ,DNA Repair ,FAILURE SYNDROME ,3122 Cancers ,DNA Helicases ,progenitor cells ,Hematology ,Haematopoietic stem ,Niche and bone marrow microenvironment ,Germ Cells ,HEMATOPOIETIC STEM ,Familial leukaemia ,Bone Marrow ,DNA-REPAIR ,Humans ,Erythropoiesis ,ANEMIA ,acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) ,Germ-Line Mutation - Abstract
Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.
- Published
- 2022