16 results on '"Philipp Gotico"'
Search Results
2. Photocatalytic generation of a non-heme Fe(III)-hydroperoxo species with O$_2$ in water for oxygen atom transfer reaction
- Author
-
Eva Pugliese, Nhat Tam Vo, Alain Boussac, Frédéric Banse, Yasmina Mekmouche, Jalila Simaan, Thierry Tron, Philipp Gotico, Marie Sircoglou, Zakaria Halime, Winfried Leibl, Ally Aukauloo, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE05-0020,LOCO,Processus Photoinduit d'Activation à 2 Electrons du CO2(2019)
- Subjects
[CHIM]Chemical Sciences ,General Chemistry - Abstract
International audience; Coupling a photoredox module and a bio-inspired non-heme model to activate O$_2$ for oxygen atom transfer (OAT) reaction requires a vigorous investigation to shed light on the multiple competing electron transfer steps, charge accumulation and annihilation processes, and the activation of O$_2$ at the catalytic unit. We found that the efficient oxidative quenching mechanism between [Ru(bpy)$_3$]$^{2+}$ chromophore and a reversible electron mediator, methyl viologen (MV$^{2+}$), to form the reducing species methyl viologen radical (MV$^{•+}$) can convey an electron to O$_2$ to form the uperoxide radical and resetting an Fe(III) species in a catalytic cycle to the Fe(II) state in an aqueous solution. The formation of the Fe(III)-hydroperoxo (Fe$^{III}$ OOH) intermediate therefrom to evolve to highly oxidized iron-oxo species to perform the OAT reaction to an alkene substrate. Such a strategy allows to bypass the challenging task of charge accumulation at the molecular catalytic unit for the two-electron activation of O$_2$. The Fe$^{III}$-OOH catalytic precursor was trapped and characterized by EPR spectroscopy pertaining a metal assisted catalysis. Importantly, we found that the substrate itself can act as the electron donor to reset the photooxidzed chromophore in the initial state closing the photocatalytic loop hence excluding the use of a sacrificial electron donor. Laser Flash Photolysis (LFP) studies and spectroscopic monitoring during photocatalysis lend credence to the proposed catalytic cycle.
- Published
- 2022
- Full Text
- View/download PDF
3. Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad
- Author
-
Philipp Gotico, Christian Herrero, Stefano Protti, Annamaria Quaranta, Sujitraj Sheth, Reza Fallahpour, Rajaa Farran, Zakaria Halime, Marie Sircoglou, Ally Aukauloo, Winfried Leibl, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Pavia = University of Pavia (UNIPV), and Universität Zürich [Zürich] = University of Zurich (UZH)
- Subjects
Electron Transport ,Light ,Imidazoles ,[CHIM]Chemical Sciences ,Electrons ,Physical and Theoretical Chemistry ,Protons - Abstract
Electron relays play a crucial role for efficient light-induced activation by a photo-redox moiety of catalysts for multi-electronic transformations. Their insertion between the two units reduces detrimental energy transfer quenching while establishing at the same time unidirectional electron flow. This rectifying function allows charge accumulation necessary for catalysis. Mapping these events in photophysical studies is an important step towards the development of efficient molecular photocatalysts. Three modular complexes comprised of a Ru-chromophore, an imidazole electron relay function, and a terpyridine unit as coordination site for a metal ion were synthesized and the light-induced electron transfer events studied by laser flash photolysis. In all cases, formation of an imidazole radical by internal electron transfer to the oxidized chromophore was observed. The effect of added base evidenced that the reaction sequence depends strongly on the possibility for deprotonation of the imidazole function in a proton-coupled electron transfer process. In the complex with Mn
- Published
- 2021
- Full Text
- View/download PDF
4. Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction
- Author
-
Thu-Trang Tran, Boris Vauzeilles, Zakaria Halime, Christophe Lefumeux, Ally Aukauloo, Aurélie Baron, Philipp Gotico, Winfried Leibl, Thomas Pino, Annamaria Quaranta, Minh-Huong Ha-Thi, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and ANR-19-CE05-0020,LOCO,Processus Photoinduit d'Activation à 2 Electrons du CO2(2019)
- Subjects
010405 organic chemistry ,Organic Chemistry ,Supramolecular chemistry ,Triazole ,chemistry.chemical_element ,[CHIM.CATA]Chemical Sciences/Catalysis ,Rhenium ,010402 general chemistry ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,Ruthenium ,chemistry.chemical_compound ,Electron transfer ,chemistry ,13. Climate action ,Carbon dioxide ,Photocatalysis ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,Electrochemical reduction of carbon dioxide - Abstract
International audience; The [Re(bpy)(CO)3Cl] catalyst pioneered by Lehn for the two-electron reduction of CO2 has constantly revealed unique facets in the mechanistic understanding of the selective transformation of CO2. A novel triazole-linked ruthenium photosensitizer and a rhenium catalyst dyad was synthesized and investigated for photo-induced charge accumulation using time-resolved absorption spectroscopy. The triazole bridging ligand promoted weak electronic communication between the two units, resulting in an anodic shift of the reduction potentials of the Re moiety. Upon excitation of the photosensitizer, the first reduction of the catalyst occurred with a fast apparent rate of >5×107 s−1. Using a double-excitation nanosecond pump-pump-probe setup to track the second electron accumulation on the catalytic unit was not conclusive as no observable absorption changes occurred upon the second excitation, suggesting a pathway for an efficient intramolecular reverse electron transfer preventing the two-electron accumulation at the catalyst under our experimental conditions. Nevertheless, under continuous irradiation and with the use of sacrificial electron donors, photocatalytic CO2 reduction assays showed good turnover numbers, hinting at the non-innocent role of byproducts in solution.
- Published
- 2021
- Full Text
- View/download PDF
5. Through‐Space Electrostatic Interactions Surpass Classical Through‐Bond Electronic Effects in Enhancing CO 2 Reduction Performance of Iron Porphyrins
- Author
-
Zakaria Halime, Winfried Leibl, Asma Khadhraoui, Ally Aukauloo, Philipp Gotico, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE05-0020,LOCO,Processus Photoinduit d'Activation à 2 Electrons du CO2(2019)
- Subjects
Coordination sphere ,biology ,Chemistry ,General Chemical Engineering ,02 engineering and technology ,[CHIM.CATA]Chemical Sciences/Catalysis ,Orders of magnitude (numbers) ,Overpotential ,010402 general chemistry ,021001 nanoscience & nanotechnology ,biology.organism_classification ,Electrostatics ,Electrocatalyst ,01 natural sciences ,0104 chemical sciences ,Catalysis ,General Energy ,Computational chemistry ,Electronic effect ,Environmental Chemistry ,Tetra ,General Materials Science ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology - Abstract
International audience; In his pioneering work to unravel the catalytic power of enzymes, A. Warshel has pertinently validated that electrostatic interactions play a major role in the activation (bond making and breaking) of substrates. Implementing such chemical artifice in bio-inspired molecular-based catalysts may help in improving their catalytic properties. In this study, we have designed a series of tetra-, di-and mono-substituted iron porphyrins with cationic imidazolium functions. The presence of a cationic module in the second coordination sphere could help to stabilize the [Fe-CO2] intermediate upon electrocatalysis through an electrostatic interaction. We found herein that the overpotential of these catalysts is a function of the number of embarked imidazolium units ranging from 230 to 620 mV compared to 680 mV for the parent nonfunctionalized tetra-phenyl iron porphyrin. Importantly, we evidenced a gain of six orders of magnitude for the turnover frequencies going from the tetra-to the mono-substituted catalyst. The comparative study nails the fact that the electrocatalytic performance trend of through-space electrostatic interaction models outperforms the classic throughstructure electronic effect strategy. Henceforth, including controlled topological electrostatic interaction may be an invaluable chemical tool in the design of molecular catalysts in the activation of small molecules.
- Published
- 2021
- Full Text
- View/download PDF
6. Imbroglio at a photoredox-iron-porphyrin catalyst dyad for the photocatalytic CO 2 reduction
- Author
-
Winfried Leibl, Ally Aukauloo, Minh-Huong Ha-Thi, Athanassios G. Coutsolelos, Georgios Charalambidis, Zakaria Halime, Adelais Trapali, Thomas Pino, Philipp Gotico, Christian Herrero, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Plateforme (PF I2BC), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE05-0020,LOCO,Processus Photoinduit d'Activation à 2 Electrons du CO2(2019)
- Subjects
010405 organic chemistry ,Chemistry ,Building and Construction ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Porphyrin ,0104 chemical sciences ,Catalysis ,Reduction (complexity) ,chemistry.chemical_compound ,Photocatalysis ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
7. Shaping the Electrocatalytic Performance of Metal Complexes for CO2 Reduction
- Author
-
Zakaria Halime, Ally Aukauloo, Philipp Gotico, Winfried Leibl, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Chemistry ,Inorganic chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,010402 general chemistry ,Electrocatalyst ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Metal ,Reduction (complexity) ,visual_art ,Electrochemistry ,visual_art.visual_art_medium ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Electrochemical reduction of carbon dioxide - Abstract
International audience; The mass scale catalytic transformation of carbon dioxide (CO2) into reduced forms of carbon is an imperative to address the ever-increasing anthropogenic emission. Understanding the mechanistic routes leading to the multi-electron-proton conversion of CO2 provides handles for chemists to overcome the kinetically and thermodynamically hard challenges and further optimize these processes. Through extensive electrochemical investigations, Prof. J-M. Savéant and coworkers have made accessible to chemists invaluable electro-analytical tools to address and position the electrocatalytic performance of molecular catalysts grounded on a theoretical basis. Furthermore, he has bequeathed lessons to future generations on ways to improve the catalytic activity and on the electrocatalytic zone we must target. As a tribute to his accomplishments, we recall here a few aspects on the tuning of iron porphyrin catalysts by playing on electronic effects, proton delivery, hydrogen bonding and electrostatic interactions and its implications to other catalytic systems.
- Published
- 2021
- Full Text
- View/download PDF
8. Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures
- Author
-
Ally Aukauloo, Philipp Gotico, Zakaria Halime, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Coordination sphere ,010405 organic chemistry ,Ligand ,[SDV]Life Sciences [q-bio] ,Nanotechnology ,Overpotential ,010402 general chemistry ,Heterogeneous catalysis ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Inorganic Chemistry ,Electrochemical reduction of carbon dioxide - Abstract
International audience; Research in the development of new molecular catalysts for the selective transformation of CO2 to reduced forms of carbon is attracting enormous interest from chemists. Molecular catalyst design hinges on the elaboration of ligand scaffolds to manipulate the electronic and structural properties for the fine tuning of the reactivity pattern. A cornucopia of ligand sets have been designed along this line and more and more are being reported. In this quest, the porphyrin molecular platform has been under intensive focus due to the unmatched catalytic properties of metalloporphyrins. There have been rapid advances in this particular field during the last few years wherein both electronic and structural aspects in the second coordination spheres have been addressed to shift the overpotential and improve the catalytic rates and product selectivity. Metalloporphyrins have also attracted much attention in terms of the elaboration of hybrid materials for heterogeneous catalysis. Here too, some promising activities have made metalloporphyrin derivatives serious candidates for technological implementation. This review collects the recent advances centred around the chemistry of metalloporphyrins for the reduction of CO2.
- Published
- 2020
- Full Text
- View/download PDF
9. Cover Feature: Spectroscopic Characterisation of a Bio‐Inspired Ni‐Based Proton Reduction Catalyst Bearing a Pentadentate N 2 S 3 Ligand with Improved Photocatalytic Activity
- Author
-
Annamaria Quaranta, Régis Guillot, Ally Aukauloo, Zakaria Halime, Philipp Gotico, Cunming Liu, Dooshaye Moonshiram, Xiaoyi Zhang, Winfried Leibl, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA), Argonne National Laboratory [Lemont] (ANL), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Reaction mechanism ,X-ray absorption spectroscopy ,Proton ,010405 organic chemistry ,Ligand ,Organic Chemistry ,chemistry.chemical_element ,General Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,010402 general chemistry ,01 natural sciences ,Combinatorial chemistry ,Catalysis ,0104 chemical sciences ,Nickel ,chemistry ,Photocatalysis ,[CHIM.COOR]Chemical Sciences/Coordination chemistry - Abstract
International audience; Inspired by the sulphur-rich environment found in active hydrogenase enzymes, a novel Ni-based proton reduction catalyst with pentadentate N2S3 ligand was synthesized. When coupled with a [Ru(bpy)3] 2+ photosensitiser and ascorbate as electron donor in a 1:1 mixture of dimethylacetamide and aqueous ascorbic acid/ascorbate buffer, the catalyst showed improved photocatalytic activity compared to a homologous counterpart with a tetradentate N2S2 ligand. The mechanistic pathway of photo-induced hydrogen evolution was comprehensively analysed through optical transient absorption (OTA) and time-resolved X-ray absorption spectroscopy (tr-XAS) revealing important electronic and structural changes in the catalytic system during photo-irradiation. It was found that the Ni (II) catalyst undergoes a photo-induced metal-centred reduction to form a Ni (I) intermediate bearing a distorted square bipyramidal geometry. Further kinetic analyses pointed out differences in charge separation dynamics between the pentadentate and tetradentate homologues.
- Published
- 2020
- Full Text
- View/download PDF
10. Atropisomeric Hydrogen Bonding Control for CO 2 Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins
- Author
-
Régis Guillot, Winfried Leibl, Marie Sircoglou, Zakaria Halime, Ally Aukauloo, Loïc Roupnel, Philipp Gotico, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atropisomer ,Coordination sphere ,Urea, carbon dioxide reduction, hydrogen bonding, iron porphyrin, second coordination ,biology ,010405 organic chemistry ,Hydrogen bond ,Chemistry ,Inorganic chemistry ,General Medicine ,General Chemistry ,Overpotential ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Porphyrin ,Catalysis ,0104 chemical sciences ,Reduction (complexity) ,chemistry.chemical_compound ,Kinetic isotope effect ,Urea ,biology.protein ,[CHIM]Chemical Sciences ,Electrochemical reduction of carbon dioxide ,Carbon monoxide dehydrogenase - Abstract
International audience; The manipulation of the second coordination sphere for improving the electrocatalytic CO2 reduction has led to amazing breakthroughs with hydrogen bonding, local proton source, or electrostatic effects. We have developed two atropisomers of an iron porphyrin complex holding two urea functions acting as multiple hydrogen bonding tweezers to lock the metal bound CO2 in a similar fashion found in the carbon monoxide dehydrogenase (CODH) enzyme. We found that the topological isomer with the two urea groups on the same side of the porphyrin platform provides a stronger binding affinity to tether the incoming CO2 substrate in comparison to the disposition. However, the electrocatalytic activity of the atropisomer outperforms its congener with one of the highest reported turnover frequency at low overpotential. The strong H/D KIE observed for the system indicates the existence of a tight water hydrogen bonding network for proton delivery which is disrupted upon addition of exogenous acid source. While the small H/D KIE for the isomer and the enhanced electrocatalytic performance upon addition of stronger acid pertain the free access of protons to the bound CO2 on the opposite side of the urea arm.
- Published
- 2020
- Full Text
- View/download PDF
11. Frontispiz: Second‐Sphere Biomimetic Multipoint Hydrogen‐Bonding Patterns to Boost CO 2 Reduction of Iron Porphyrins
- Author
-
Philipp Gotico, Bernard Boitrel, Régis Guillot, Marie Sircoglou, Annamaria Quaranta, Zakaria Halime, Winfried Leibl, and Ally Aukauloo
- Subjects
General Medicine - Published
- 2019
- Full Text
- View/download PDF
12. Second-Sphere Biomimetic Multipoint Hydrogen-Bonding Patterns to Boost CO2 Reduction of Iron Porphyrins
- Author
-
Philipp Gotico, Bernard Boitrel, Régis Guillot, Marie Sircoglou, Annamaria Quaranta, Zakaria Halime, Winfried Leibl, Ally Aukauloo, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coordination sphere ,urea ,Overpotential ,010402 general chemistry ,Photochemistry ,porphyrins ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,iron ,Molecule ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Electrochemical reduction of carbon dioxide ,carbon dioxide reduction ,biology ,010405 organic chemistry ,Hydrogen bond ,General Medicine ,General Chemistry ,hydrogen bonding ,Porphyrin ,3. Good health ,0104 chemical sciences ,chemistry ,13. Climate action ,biology.protein ,Carbon monoxide dehydrogenase - Abstract
International audience; Inspired by nature's orchestra of chemical subtleties to activate and reduce CO2, we have developed a family of iron porphyrin derivatives in to which we have introduced urea groups functioning as multipoint hydrogen‐bonding pillars on the periphery of the porphyrinic ring. This structure closely resembles the hydrogen‐bond stabilization scheme of the carbon dioxide (CO2) adduct in the carbon monoxide dehydrogenase (CODH). We found that such changes to the second coordination sphere significantly lowered the overpotential for CO2 reduction in this family of molecular catalysts and importantly increased the CO2 binding rate while maintaining high turnover frequency (TOF) and selectivity. Entrapped water molecules within the molecular clefts were found to be the source of protons for the CO2 reduction.
- Published
- 2019
- Full Text
- View/download PDF
13. Cover Feature: Through‐Space Electrostatic Interactions Surpass Classical Through‐Bond Electronic Effects in Enhancing CO 2 Reduction Performance of Iron Porphyrins (ChemSusChem 5/2021)
- Author
-
Asma Khadhraoui, Zakaria Halime, Winfried Leibl, Philipp Gotico, and Ally Aukauloo
- Subjects
Reduction (complexity) ,General Energy ,Materials science ,Cover (topology) ,Feature (computer vision) ,Chemical physics ,General Chemical Engineering ,Electronic effect ,Environmental Chemistry ,General Materials Science ,Electrostatics ,Space (mathematics) - Published
- 2021
- Full Text
- View/download PDF
14. Spectroscopic Characterization of Bio-inspired Ni-based Proton Reduction Catalyst Bearing Pentadentate N2S3 Ligand with Improved Photocatalytic Activity
- Author
-
Winfried Leibl, Annamaria Quaranta, Dooshaye Moonshiram, Ally Aukauloo, Cunming Liu, Xiaoyi Zhang, Régis Guillot, Zakaria Halime, Philipp Gotico, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Bioénergétique Membranaire et Stress (LBMS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Photocatalyse et Biohydrogène (LPB)
- Subjects
X-ray absorption spectroscopy ,Absorption spectroscopy ,010405 organic chemistry ,Chemistry ,Ligand ,[SDV]Life Sciences [q-bio] ,Organic Chemistry ,Electron donor ,General Chemistry ,010402 general chemistry ,Photochemistry ,Ascorbic acid ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Bipyridine ,chemistry.chemical_compound ,Photocatalysis ,Optical Transient Absorption ,Time-Resolved X-ray Absorption Spectroscopy ,Bio-inspired Catalysts ,Hydrogen - Abstract
International audience; Inspired by the sulphur-rich environment found in active hydrogenase enzymes, a novel Ni-based proton reduction catalyst with pentadentate N 2 S 3 ligand was synthesized. When coupled with a [Ru(bpy) 3 ] 2+ photosensitiser and ascorbate as electron donor in a 1:1 mixture of dimethylacetamide and aqueous ascorbic acid/ascorbate buffer, the catalyst showed improved photocatalytic activity compared to a homologous counterpart with a tetradentate N 2 S 2 ligand. The mechanistic pathway of photo-induced hydrogen evolution was comprehensively analysed through optical transient absorption (OTA) and time-resolved X-ray absorption spectroscopy (tr-XAS) revealing important electronic and structural changes in the catalytic system during photo-irradiation. It was found that the Ni (II) catalyst undergoes a photo-induced metal-centred reduction to form a Ni (I) intermediate bearing a distorted square bipyramidal geometry. Further kinetic analyses pointed out differences in charge separation dynamics between the pentadentate and tetradentate homologues.
- Published
- 2019
- Full Text
- View/download PDF
15. Visible-Light-Driven Reduction of CO$_2$ to CO and Its Subsequent Valorization in Carbonylation Chemistry and $^{13}$C Isotope Labeling
- Author
-
Antonio Del Vecchio, Ally Aukauloo, Annamaria Quaranta, Winfried Leibl, Philipp Gotico, Davide Audisio, Zakaria Halime, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Service de Chimie Bio-Organique et de Marquage (SCBM), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), IRAMAT - Laboratoire Métallurgies et Cultures (IRAMAT - LMC), Institut de Recherches sur les Archéomatériaux (IRAMAT), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM), Laboratoire de Marquage au Carbone 14 (LMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Médicaments et Technologies pour la Santé (MTS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), ANR-11-LABX-0039,CHARMMMAT,CHimie des ARchitectures MoléculairesMultifonctionnelles et des MATériaux(2011), ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), European Project: 675071,H2020,H2020-MSCA-ITN-2015,ISOTOPICS(2016), Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Mécanismes fondamentaux de la Bioénergétique (LMB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Photocatalyse et Biohydrogène (LPB), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Médicaments et Technologies pour la Santé (MTS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay, and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
photoredox catalysis ,[SDV]Life Sciences [q-bio] ,homogeneous catalysts ,chemistry.chemical_element ,carbonylation ,010402 general chemistry ,Photochemistry ,carbon-dioxide ,01 natural sciences ,Analytical Chemistry ,Artificial photosynthesis ,Catalysis ,Isotopic labeling ,chemistry.chemical_compound ,Physical and Theoretical Chemistry ,isotopic labeling ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,continuous-flow ,Organic Chemistry ,Photoredox catalysis ,photocatalytic reduction ,carbon dioxide ,[CHIM.CATA]Chemical Sciences/Catalysis ,photochemical reduction ,0104 chemical sciences ,Ruthenium ,formic-acid ,LPB ,chemistry ,highly efficient ,13. Climate action ,artificial photosynthesis ,Photocatalysis ,rhenium(i) complex ,Carbonylation ,B3S ,photocatalysis ,Carbon monoxide ,metal-complexes - Abstract
WOS:000441548500003; International audience; A convenient and safe approach in valorizing carbon monoxide (CO) produced from the photocatalytic reduction of carbon dioxide (CO2) has been investigated. Visible light was used to drive an optimized photocatalytic reduction using a ruthenium trisbipyridine complex as a sensitizer and a rhenium bipyridyl carbonyl complex as a catalyst to perform an efficient reduction of CO2 to CO, which was then simultaneously utilized in a palladium-catalyzed aminocarbonylation reaction at room temperature. This approach provides safe handling of the produced CO which also opens the way for a more efficient application of C-13-isotope and C-14-radioisotope-labeled CO2 in pharmaceutically relevant drug labeling.
- Published
- 2018
- Full Text
- View/download PDF
16. Local ionic liquid environment at a modified iron porphyrin catalyst enhances the electrocatalytic performance of CO2 to CO reduction in water
- Author
-
Bernard Boitrel, Zakaria Halime, Winfried Leibl, Asma Khadhraoui, Ally Aukauloo, Philipp Gotico, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Mécanismes fondamentaux de la Bioénergétique (LMB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Proton ,010405 organic chemistry ,Inorganic chemistry ,Metals and Alloys ,General Chemistry ,Overpotential ,010402 general chemistry ,01 natural sciences ,Porphyrin ,Catalysis ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Reduction (complexity) ,chemistry.chemical_compound ,chemistry ,Ionic liquid ,Materials Chemistry ,Ceramics and Composites ,polycyclic compounds ,[CHIM]Chemical Sciences ,Selective reduction ,heterocyclic compounds - Abstract
International audience; In this study we report a strategy to attach methylimidazolium fragments as ionic liquid units on an established iron porphyrin catalyst for the selective reduction of CO2 to CO. Importantly, we found that the tetra-methylimidazolium containing porphyrin exhibits an exalted electrocatalytic activity at low overpotential in water precluding the need for an external proton donor.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.