1. Fast reconstruction of atomic-scale STEM-EELS images from sparse sampling
- Author
-
Etienne Monier, Xiaoyan Li, Thomas Oberlin, Nathalie Brun, Marcel Tencé, Nicolas Dobigeon, Signal et Communications (IRIT-SC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut National Polytechnique (Toulouse) (Toulouse INP), ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Institut universitaire de France - IUF (FRANCE), Université Paris-Saclay (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), and Laboratoire de Physique des solides - LPS (Orsay, France)
- Subjects
FOS: Computer and information sciences ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,02 engineering and technology ,partial acquisition ,01 natural sciences ,Atomic units ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Traitement des images ,Atomic-scale images ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Scanning transmission electron microscopy ,Microscopy ,Instrumentation ,010302 applied physics ,Condensed Matter - Materials Science ,electron energy loss spectroscopy ,Image and Video Processing (eess.IV) ,Sampling (statistics) ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Fast reconstruction ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,scanning transmission electron microscopy ,0210 nano-technology ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,fast reconstruction ,Computation ,atomic-scale images ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,FOS: Physical sciences ,Iterative reconstruction ,Synthetic data ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,0103 physical sciences ,FOS: Electrical engineering, electronic engineering, information engineering ,Partial acquisition ,Electron energy loss spectroscopy ,Spectrum-images ,business.industry ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Materials Science (cond-mat.mtrl-sci) ,Pattern recognition ,Electrical Engineering and Systems Science - Image and Video Processing ,Stem eels ,spectrum-images ,Artificial intelligence ,business - Abstract
International audience; This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real as synthetic data will be conducted.
- Published
- 2020
- Full Text
- View/download PDF