3 results on '"Jean-Philippe Navarro"'
Search Results
2. Multi-level experimental and numerical analysis of composite stiffener debonding. Part 1: Non-specific specimen level
- Author
-
Bruno Castanié, Jean-Jacques Barrau, Julien Bertolini, Jean-Philippe Navarro, Institut Clément Ader (ICA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Dassault Aviation, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
Engineering ,business.industry ,Fracture Mechanics ,Delamination ,Fracture mechanics ,[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph] ,02 engineering and technology ,Structural engineering ,Bending ,[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] ,Flange ,021001 nanoscience & nanotechnology ,Finite element method ,Crack closure ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Fuselage ,Buckling ,Ceramics and Composites ,Skin/stiffener debonding ,Finite Element analysis ,Composite material ,0210 nano-technology ,business ,Civil and Structural Engineering - Abstract
International audience; A multi-level analysis of skin/stiffener debonding is used for the fuselage design of future aircraft during postbuckling. The specimens composed of a laminate (the skin) to which an over-thickness (the flange) had been added were subjected to four-point bending, which led to interface failure between the flange and the skin. These tests were performed with several configurations and parameters, such as the orientation of the plies located at the interface, temperature (-50°C, 20°C and 70°C), ageing and manufacturing mode: co-cured or co-bonded. The flange shape (tapered or not) and thickness were also considered. Test data are presented and analyzed and critical configurations are identified. Finite element models were developed and the flange debonding loads computed, firstly by use of cohesive models and then through a fracture mechanics approach (Virtual Crack Closure Technique). In both cases, the Benzeg-gagh-Kenane criterion was selected and proved its efficiency but the fracture mechanics approach was an order of magnitude less time consuming, which will enable future modelling to include larger sizes.
- Published
- 2009
- Full Text
- View/download PDF
3. An experimental and numerical study on omega stringer debonding
- Author
-
Jean-Philippe Navarro, Jean-Jacques Barrau, Julien Bertolini, Bruno Castanié, Laboratoire de Génie Mécanique de Toulouse (LGMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Dassault Aviation, Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)
- Subjects
Engineering ,Three point flexural test ,business.industry ,Fracture mechanics ,[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph] ,02 engineering and technology ,Structural engineering ,Flange ,021001 nanoscience & nanotechnology ,Omega ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Fuselage ,Buckling ,Stringer ,Ceramics and Composites ,Composite material ,0210 nano-technology ,Fillet (mechanics) ,business ,ComputingMilieux_MISCELLANEOUS ,Civil and Structural Engineering - Abstract
Omega stringers offer interesting structural capabilities and are expected on future aircraft fuselages. In postbuckling mode, the final failure of these structures may occur by stringer debonding between stringer flanges and the skin of the fuselage. In this study, it is demonstrated that the use of fracture mechanics allows to predict skin/omega stringer separation under multiple load cases. Three different load cases and experiments are presented allowing a debonding to start at different locations: at free flange edges or at the inner radius of the omega. Firstly, a skin/stringer configuration subjected to three point bending following the longitudinal axis of the stringer was tested. For this configuration, a numerical study was made and shows the influence of a refined mesh taking into account resin fillets. Secondly, new specimens were obtained by cutting into slices the longitudinal specimen. Those specimens were subjected to four points bending. It has been shown that the upper rolls position of the test jig could modify the debonding location. Numerical models have allowed to determine accurately the debonding location and the associated load level. For some specimens, resin fillets were removed from the flange tips and their effect were assessed numerically and experimentally.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.