1. Explicit second-order min-max optimization methods with optimal convergence guarantees
- Author
-
Lin, Tianyi, Mertikopoulos, Panayotis, Jordan, Michael, Department of Electrical Engineering and Computer Sciences (Berkeley EECS), Performance analysis and optimization of LARge Infrastructures and Systems (POLARIS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Department of Statistics [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), ANR-19-CE48-0018,ALIAS,Apprentissage adaptatif multi-agent(2019), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), and ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] - Abstract
We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of a convex-concave unconstrained min-max optimization problem. Compared to their first-order counterparts, investigations of second-order methods for min-max optimization are relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we highlight how second-order information can be used to speed up the dynamics of dual extrapolation methods despite inexactness. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an ϵ-saddle point within O(ϵ −2/3) iterations in terms of a gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without requiring any compactness assumptions. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.
- Published
- 2022