1. Developing a MEMS device with built-in microfluidics for biophysical single cell characterization
- Author
-
Chann Lagadec, Dominique Collard, Hiroyuki Fujita, Manabu Ataka, Gregoire Perret, Momoko Kumemura, Yuki Takayama, Samuel Meignan, Mehmet C. Tarhan, Stanislav L. Karsten, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique-IEMN (PHYSIQUE-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratory for Integrated Micro Mechatronics Systems (LIMMS), The University of Tokyo (UTokyo)-Centre National de la Recherche Scientifique (CNRS), Kyushu Institute of Technology (Kyutech), The University of Tokyo (UTokyo), Centre Régional de Lutte contre le Cancer Oscar Lambret [Lille] (UNICANCER/Lille), Université de Lille-UNICANCER, Plasticité Cellulaire et Cancer - U908 (CPAC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Physique - IEMN (PHYSIQUE - IEMN), IEMN, Collection, and Acknowledgments:Authors would like to thank the VLSI Design and Education Center (VDEC, The Universityof Tokyo, Japan) for the mask production, IRCL (Institut pour la Recherche sur le Cancer de Lille, France) forhosting SMMiL-E facilities and V. Menon for critical reading of the paper. Y.T. thanks the University of Lille andthe SIRIC ONCO-Lille, and M.C.T. thanks Région Hauts-de-France for financial support.
- Subjects
0301 basic medicine ,Materials science ,lcsh:Mechanical engineering and machinery ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Microfluidics ,microfluidics ,single cell analysis ,02 engineering and technology ,Capacitive displacement sensor ,Article ,Displacement (vector) ,03 medical and health sciences ,[SPI]Engineering Sciences [physics] ,[SPI.MECA.BIOM] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,lcsh:TJ1-1570 ,Electrical measurements ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Microelectromechanical systems ,[SDV.IB] Life Sciences [q-bio]/Bioengineering ,Microchannel ,biophysical cell characterization ,business.industry ,MEMS design ,Mechanical Engineering ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,021001 nanoscience & nanotechnology ,Characterization (materials science) ,030104 developmental biology ,Control and Systems Engineering ,Optoelectronics ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,0210 nano-technology ,business ,Actuator ,bioMEMS - Abstract
This study combines the high-throughput capabilities of microfluidics with the sensitive measurements of microelectromechanical systems (MEMS) technology to perform biophysical characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in microchannel that is probed by two opposing tips performing compression and sensing separately. Mechanical displacement of the compressing tip (up to a maximum of 14 µ, m) and the sensing tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing is performed with a capacitive displacement sensor. The device is designed and developed for simultaneous electrical and mechanical measurements. As the device is capable of exchanging the liquid inside the channel, different solutions were tested consecutively. The performance of the device was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM (10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by capturing single cancer cells. These results show three important capabilities of the proposed device: mechanical measurements, electrical measurements, and biological sample handling. Combined in one device, these features allow for high-throughput multi-parameter characterization of single cells.
- Published
- 2018