1. The De Vylder–Goovaerts conjecture holds within the diffusion limit
- Author
-
Nabil Kazi-Tani, Stefan Ankirchner, Christophette Blanchet-Scalliet, Institut für Mathematik, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Sciences Actuarielle et Financière (SAF), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
Statistics and Probability ,Approximations of π ,Ruin probability ,General Mathematics ,Open problem ,[QFIN.RM]Quantitative Finance [q-fin]/Risk Management [q-fin.RM] ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,0502 economics and business ,Risk theory ,Applied mathematics ,0101 mathematics ,Diffusion (business) ,Gaussian process ,Mathematics ,050208 finance ,Conjecture ,05 social sciences ,Heavy traffic approximation ,Diffusion approximations ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Equalized claims ,Distribution (mathematics) ,Jump ,symbols ,Statistics, Probability and Uncertainty - Abstract
The De Vylder and Goovaerts conjecture is an open problem in risk theory, stating that the finite-time ruin probability in a standard risk model is greater than or equal to the corresponding ruin probability evaluated in an associated model with equalized claim amounts. Equalized means here that the jump sizes of the associated model are equal to the average jump in the initial model between 0 and a terminal time T.In this paper, we consider the diffusion approximations of both the standard risk model and its associated risk model. We prove that the associated model, when conveniently renormalized, converges in distribution to a Gaussian process satisfying a simple SDE. We then compute the probability that this diffusion hits the level 0 before time T and compare it with the same probability for the diffusion approximation for the standard risk model. We conclude that the De Vylder and Goovaerts conjecture holds for the diffusion limits.
- Published
- 2019