1. Inflight performance of the PILOT balloon-borne experiment
- Author
-
C. Engel, F. Pajot, J. Martignac, F. Bousqet, Y. Lepennec, S. Maestre, Nicolas Bray, Matthew Joseph Griffin, Peter A. R. Ade, A. Hughes, Silvia Masi, J. Narbonne, G. Foënard, René J. Laureijs, Frederi Mirc, Christopher Tibbs, J. M. Nicot, P. deBernardis, Y. André, G. Roudil, L. Rodriguez, Pierre Tapie, L. Bautista, B. Maffei, P. Etcheto, Etienne Perot, Peter Charles Hargrave, J. A. Tauber, J. P. Dubois, S. Grabarnik, B. Mot, M. Bouzit, L. Montier, O. Boulade, C. Marty, E. Doumayrou, Giampaolo Pisano, Isabelle Ristorcelli, H. Roussel, Nicolas Ponthieu, B. Leriche, A. Mangilli, X. Dupac, C. Tucker, Ph. Gelot, Y. Longval, Giorgio Savini, A. Lacourt, J. Aumont, V. Buttice, R. Misawa, M. Charra, Johan Montel, J. Pimentao, Muriel Saccoccio, W. Marty, B. Crane, M. Chaigneau, J.-P. Bernard, G. Parot, S. Stever, Maria Salatino, O. Simonella, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Point spread function ,High energy particle ,Far infrared ,Residual ,01 natural sciences ,Glitches ,Background ,Inflight performances ,Interstellar dust ,PILOT ,Pointing ,Polarization ,Responses ,Straylight ,0103 physical sciences ,Calibration ,010303 astronomy & astrophysics ,Cosmic dust ,Remote sensing ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Polarization (waves) ,Wavelength ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Environmental science - Abstract
International audience; The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240 µm (1.2 THz). A first PILOT flight of the experiment took place from Timmins, Ontario, Canada, in September 2015 and a second flight took place from Alice Springs, Australia in April 2017. In this paper, we present the inflight performance of the instrument. Here we concentrate on the instrument performance as measured during the second flight, but refer to the performance observed during the first flight, if it was significantly different. We present a short description of the instrument and the flights. We measure the time constants of the detectors using the decay of the observed signal during flight following high energy particle impacts (glitches) and switching off the instrument's internal calibration source. We use these time constants to deconvolve the timelines and analyze the optical quality of the instrument as measured on planets. We then analyze the structure and polarization of the instrumental background. We measure the detector response flat field and its time variations using the signal from the residual atmosphere and from the internal calibration source. Finally, we analyze the spectral and temporal properties of the detector noise. The inflight performance is found to be satisfactory and globally in line with expectations from ground calibrations. We conclude by assessing the expected inflight sensitivity of the instrument in light of the measured inflight performance.
- Published
- 2019
- Full Text
- View/download PDF