1. Feedback stabilization of parabolic systems with input delay
- Author
-
Imene Aicha Djebour, Takéo Takahashi, Julie Valein, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01)., ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015), ANR-16-CE40-0013,ISDEEC,Interactions entre Systèmes Dynamiques, Equations d'Evolution et Contrôle(2016), and ANR-19-CE48-0004,ODISSE,Synthèse d'observateur pour des systèmes de dimension infinie(2019)
- Subjects
0209 industrial biotechnology ,Work (thermodynamics) ,Control and Optimization ,Feedback control ,parabolic systems ,2010 Mathematics Subject Classification 93B52, 93D15, 35Q30, 76D05, 93C20 ,02 engineering and technology ,01 natural sciences ,Navier-Stokes system ,020901 industrial engineering & automation ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics ,delay control ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,stabilizability ,finite-dimensional control ,Nonlinear system ,Transformation (function) ,Optimization and Control (math.OC) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Constant (mathematics) ,Stationary state ,Analysis of PDEs (math.AP) - Abstract
This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the \begin{document}$ N $\end{document}-dimensional linear reaction-convection-diffusion equation with \begin{document}$ N\geq 1 $\end{document} and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.
- Published
- 2020
- Full Text
- View/download PDF