1. Towards a new friction model for shallow water equations through an interactive viscous layer
- Author
-
Hoang-Minh Le, François James, Mathilde Legrand, Pierre-Yves Lagrée, Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics (Saint-Venant), École des Ponts ParisTech (ENPC)-Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Institut Denis Poisson ( IDP ), Université de Tours-Centre National de la Recherche Scientifique ( CNRS ) -Université d'Orléans ( UO ), Institut Jean Le Rond d'Alembert ( DALEMBERT ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics ( Saint-Venant ), École des Ponts ParisTech ( ENPC ) -Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement ( Cerema ) -EDF R&D ( EDF R&D ), and EDF ( EDF ) -EDF ( EDF )
- Subjects
76N17 ,friction law ,010504 meteorology & atmospheric sciences ,von Kármán equation ,Hydrostatic pressure ,Perfect fluid ,Föppl–von Kármán equations ,01 natural sciences ,65M08 ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Superposition principle ,Mathematics - Analysis of PDEs ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,viscous layer ,0103 physical sciences ,35L65 ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Prandtl equation ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Shallow water equations ,2010 AMS subject classifications: Primary: 35L60 ,35Q35 ,0105 earth and related environmental sciences ,Mathematics ,von Kármán equation 2010 AMS subject classifications: 35L60 ,Numerical Analysis ,Finite volume method ,Applied Mathematics ,[ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,shallow water ,Mechanics ,Computational Mathematics ,Boundary layer ,Waves and shallow water ,Modeling and Simulation ,Analysis ,Analysis of PDEs (math.AP) - Abstract
The derivation of shallow water models from Navier–Stokes equations is revisited yielding a class of two-layer shallow water models. An improved velocity profile is proposed, based on the superposition of an inviscid fluid and a viscous layer inspired by the Interactive Boundary Layer interaction used in aeronautics. This leads to a new friction law which depends not only on velocity and depth but also on the variations of velocity and thickness of the viscous layer. The resulting system is an extended shallow water model consisting of three depth-integrated equations: the first two are mass and momentum conservation in which a slight correction on hydrostatic pressure has been made; the third one, known as von Kármán equation, describes the evolution of the viscous layer. This coupled model is shown to be conditionally hyperbolic, and a Godunov-type finite volume scheme is also proposed. Several numerical examples are provided and compared to the Multi-Layer Saint-Venant model. They emphasize the ability of the model to deal with unsteady viscous effects. They illustrate also the phase-lag between friction and topography, and even recover possible reverse flows.
- Published
- 2019
- Full Text
- View/download PDF