Bou Haidar, Naila, Dé, Emmanuelle, Schaumann, Annick, Barreau, Magalie, Feuilloley, Marc G.J., Duncan, Anthony, MESSIN, Tiphaine, Marais, Stéphane, Follain, Nadège, GUINAULT, Alain, GAUCHER, Valérie, Delpouve, Nicolas, Sollogoub, Cyrille, Polymères Biopolymères Surfaces (PBS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), Normandie Université (NU)-Normandie Université (NU), Procédés et Ingénierie en Mécanique et Matériaux [Paris] (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Unité Matériaux et Transformations - UMR 8207 (UMET), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), and Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL)
Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm. Here, we report a new conceptual tool aimed at overcoming this drawback: an antibiofilm drug delivery system targeting the bacterial biofilm as a whole, by inhibiting its formation and/or disrupting it once it is formed. The system consists of a micro/nanostructured poly(butylene-succinate-co-adipate) (PBSA)-based asymmetric membrane (AM) with controlled porosity. By the incorporation of hydrophilic porogen agents, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), we were able to obtain AMs with high levels of porosity, exhibiting interconnections between pores. The PBSA-PEG membrane presented a dense upper layer with pores small enough to block bacteria penetration. Upon using such porogen agents, under dry and wet conditions, membrane's integrity and mechanical properties were maintained. Using bovine serum albumin (BSA) as a model protein, we demonstrated that protein loading and release from PBSA membranes were affected by the membrane structure (porosity) and the presence of residual porogen. Furthermore, the release curve profile consisted of a fast initial slope followed by a second slow phase approaching a plateau within 24 h. This can be highly beneficial for the promotion of wound healing. Cross-sectional confocal laser scanning microscopy (CLSM) images revealed a heterogeneous distribution of fluorescein isothiocyanate (FITC) labeled BSA throughout the entire membrane. PBSA membranes were loaded with dispersin B (DB), a specific antibiofilm matrix enzyme. Studies using a Staphylococcus epidermidis model, indicate significant efficiency in both inhibiting or dispersing preformed biofilm (up to 80 % eradication). The asymmetric PBSA membrane prepared with the PVP porogen (PBSA-PVP) displayed highest antibiofilm activity. Moreover, in vitro cytotoxicity assays using HaCaT and reconstructed human epidermis (RHE) models revealed that unloaded and DB-loaded PBSA-PVP membranes had excellent biocompatibility suitable for wound dressing applications.