1. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity
- Author
-
Taylor A. Evans, Melis Atalar, Patrick R. Sosnay, Molly B. Sheridan, Sangwoo T. Han, Matthew J. Pellicore, Karen S. Raraigh, Anya T. Joynt, Emily Davis, Allison F. McCague, Neeraj Sharma, Garry R. Cutting, and Zhongzhou Lu
- Subjects
0301 basic medicine ,congenital, hereditary, and neonatal diseases and abnormalities ,medicine.medical_specialty ,Mutation, Missense ,Cystic Fibrosis Transmembrane Conductance Regulator ,Context (language use) ,Genomics ,Biology ,Genome ,Article ,Cell Line ,03 medical and health sciences ,0302 clinical medicine ,Genetics ,medicine ,Humans ,Missense mutation ,RNA, Messenger ,Genetics (clinical) ,Molecular pathology ,Molecular Sequence Annotation ,respiratory system ,Reference Standards ,Phenotype ,respiratory tract diseases ,030104 developmental biology ,Gene Expression Regulation ,Medical genetics ,Biological Assay ,Mutant Proteins ,Algorithms ,030217 neurology & neurosurgery ,Function (biology) - Abstract
Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated 25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.
- Published
- 2018
- Full Text
- View/download PDF