1. Exploring habitats-based spatial distributions: improving predictions of lymphovascular invasion in invasive breast cancer.
- Author
-
Ge W, Fan X, Zeng Y, Yang X, Zhou L, and Zuo Z
- Subjects
- Humans, Female, Retrospective Studies, Middle Aged, Adult, Aged, Multiparametric Magnetic Resonance Imaging methods, Tumor Burden, Lymphatic Metastasis diagnostic imaging, Nomograms, Contrast Media, Magnetic Resonance Imaging methods, Breast Neoplasms diagnostic imaging, Breast Neoplasms pathology, Neoplasm Invasiveness
- Abstract
Rationale and Objectives: Accurate assessment of lymphovascular invasion (LVI) in invasive breast cancer (IBC) plays a pivotal role in tailoring personalized treatment plans. This study aimed to investigate habitats-based spatial distributions to quantitatively measure tumor heterogeneity on multiparametric magnetic resonance imaging (MRI) scans and assess their predictive capability for LVI in patients with IBC., Materials and Methods: In this retrospective cohort study, we consecutively enrolled 241 women diagnosed with IBC between July 2020 and July 2023 and who had 1.5 T/T1-weighted images, fat-suppressed T2-weighted images, and dynamic contrast-enhanced MRI. Habitats-based spatial distributions were derived from the gross tumor volume (GTV) and gross tumor volume plus peritumoral volume (GPTV). GTV_habitats and GPTV_habitats were generated through sub-region segmentation, and their performances were compared. Subsequently, a combined nomogram was developed by integrating relevant spatial distributions with the identified MR morphological characteristics. Diagnostic performance was compared using receiver operating characteristic curve analysis and decision curve analysis. Statistical significance was set at p < 0.05., Results: GPTV_habitats exhibited superior performance compared to GTV_habitats. Consequently, the GPTV_habitats, diffusion-weighted imaging rim signs, and peritumoral edema were integrated to formulate the combined nomogram. This combined nomogram outperformed individual MR morphological characteristics and the GPTV_habitats index, achieving area under the curve values of 0.903 (0.847 -0.959), 0.770 (0.689 -0.852), and 0.843 (0.776 -0.910) in the training set and 0.931 (0.863 -0.999), 0.747 (0.613 -0.880), and 0.849 (0.759 -0.938) in the validation set., Conclusion: The combined nomogram incorporating the GPTV_habitats and identified MR morphological characteristics can effectively predict LVI in patients with IBC., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF