1. Augmented Reality and Machine Learning Incorporation Using YOLOv3 and ARKit
- Author
-
Huy Le, Minh Nguyen, Wei Qi Yan, and Hoa Nguyen
- Subjects
augmented reality ,artificial intelligence ,synthetic data annotation ,deep learning ,object detection ,YOLOv3 ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Augmented reality is one of the fastest growing fields, receiving increased funding for the last few years as people realise the potential benefits of rendering virtual information in the real world. Most of today’s augmented reality marker-based applications use local feature detection and tracking techniques. The disadvantage of applying these techniques is that the markers must be modified to match the unique classified algorithms or they suffer from low detection accuracy. Machine learning is an ideal solution to overcome the current drawbacks of image processing in augmented reality applications. However, traditional data annotation requires extensive time and labour, as it is usually done manually. This study incorporates machine learning to detect and track augmented reality marker targets in an application using deep neural networks. We firstly implement the auto-generated dataset tool, which is used for the machine learning dataset preparation. The final iOS prototype application incorporates object detection, object tracking and augmented reality. The machine learning model is trained to recognise the differences between targets using one of YOLO’s most well-known object detection methods. The final product makes use of a valuable toolkit for developing augmented reality applications called ARKit.
- Published
- 2021
- Full Text
- View/download PDF