1. Distilling Before Refine: Spatio-Temporal Transfer Learning for Mapping Irrigated Areas Using Sentinel-1 Time Series
- Author
-
Mehrez Zribi, Nicolas Baghdadi, Valérie Demarez, Dino Ienco, Hassan Bazzi, Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CONV-0004,DIGITAG,Institut Convergences en Agriculture Numérique(2016)
- Subjects
SATELLITE IMAGE TIME SERIES ,DEEP LEARNING ,Computer science ,business.industry ,TRANSFER LEARNING ,Deep learning ,0211 other engineering and technologies ,02 engineering and technology ,KNOWLEDGE DISTILLATION ,Geotechnical Engineering and Engineering Geology ,computer.software_genre ,Convolutional neural network ,Random forest ,Data modeling ,SENTINEL-1 ,[SDE]Environmental Sciences ,Artificial intelligence ,Data mining ,Electrical and Electronic Engineering ,Time series ,business ,Transfer of learning ,Classifier (UML) ,computer ,021101 geological & geomatics engineering - Abstract
International audience; This letter proposes a deep learning model to deal with the spatial transfer challenge for the mapping of irrigated areas through the analysis of Sentinel-1 data. First, a convolutional neural network (CNN) model called "Teacher Model" is trained on a source geographical area characterized by a huge volume of samples. Then, this model is transferred from the source area to a target area characterized by a limited number of samples. The transfer learning framework is based on a distill and refine strategy in which the teacher model is firstly distilled into a student model and, successively, refined by data samples coming from the target geographical area. The proposed strategy is compared to different approaches including a random forest (RF) classifier trained on the target dataset, a CNN trained on the source dataset and directly applied on the target area as well as several CNN classifiers trained on the target dataset. The evaluation of the performed transfer strategy shows that the "distill and refine" framework obtains the best performance compared to other competing approaches. The obtained findings represent a first step towards the understanding of the spatial transferability of deep learning models in the Earth Observation domain.
- Published
- 2020
- Full Text
- View/download PDF