1. Oligomerization states of the Mycobacterium tuberculosis RNA polymerase core and holoenzymes.
- Author
-
Francis SM, Pattar Kadavan S, and Natesh R
- Subjects
- Holoenzymes chemistry, Holoenzymes metabolism, Microscopy, Electron, Transmission, Sigma Factor metabolism, Sigma Factor chemistry, Sigma Factor genetics, Chromatography, Gel, Mycobacterium tuberculosis enzymology, Mycobacterium tuberculosis genetics, Mycobacterium tuberculosis chemistry, DNA-Directed RNA Polymerases metabolism, DNA-Directed RNA Polymerases chemistry, DNA-Directed RNA Polymerases genetics, Protein Multimerization, Bacterial Proteins metabolism, Bacterial Proteins chemistry, Bacterial Proteins genetics
- Abstract
During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ββ'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σ
A ) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF