Polymeric coatings are used as a protective layer to preserve food or beverage quality and protect it from corrosion and avoid a metallic taste. These types of materials can contain some chemicals that are susceptible to migrate to food and constitute a risk for consumers’ health. This study is focused on the identification of volatile and semi-volatile low molecular weight compounds present in polymeric coatings used for metal food and beverage cans. A method based on solid–liquid extraction followed by gas chromatography–mass spectrometry (GC-MS) was optimized for the semi-volatile compounds. Different solvents were tried with the aim of extracting compounds with different polarities. Furthermore, a method based on solid-phase microextraction (SPME) in headspace (HS) mode and gas chromatography coupled with mass spectrometry (HSSPME-GC-MS) was developed for the identification of potential volatile migrants in polymeric coatings. Some parameters such as extraction time, equilibrium temperature, or the type of fiber were optimized. Different compounds, including aldehydes such as octanal or nonanal, alcohols such as α-terpineol or 2-butoxyethanol, ethers, alkenes, or phthalic compounds, among others, were identified and confirmed with analytical standards both via SPME analysis as well after solvent extraction This research was funded by the Ministerio de Ciencia, Innovación y Universidades, by the Fondo Europeo de Desarrollo Regional (FEDER), and by the Agencia Estatal de Investigación Ref. No. PGC2018-094518-B-I00 “MIGRACOATING” (MICIU/FEDER, UE). The authors are grateful to the Ministerio de Ciencia, Innovación y Universidades for the predoctoral fellowship (ref. PRE2019-088195) awarded to P.V.-L.; A.L.-C. is grateful for her grant Programa de axudas á etapa predoutoral da Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria) SI