1. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics
- Author
-
Zhongzhu Hong, Zhaowei Chen, Qiushui Chen, and Huanghao Yang
- Subjects
General Medicine ,General Chemistry - Abstract
ConspectusX-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast
- Published
- 2022
- Full Text
- View/download PDF