1. Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties
- Author
-
Bruno Santiago, Christian Bonatti, Sébastien Alvarez, Centro de Matematica [Uruguay] (CMAT), Universidad de la República (UDELAR), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Instituto de Matemática e Estatística [Rio de Janeiro] (IME-UFF), Universidade Federal Fluminense [Rio de Janeiro] (UFF), and CAPES Programa Contratacion de Academicos Provenientes del Exterior of CSIC (Uruguay) project Geometric theory of dynamical systems ANII FCE-1-2017-1-135352IFUM Ciencia sem Fronteiras CAPES Marco Brunella's post-doctoral fellowship at Universite de Bourgogne
- Subjects
Pure mathematics ,Conjecture ,General Mathematics ,37C85 ,010102 general mathematics ,Zero (complex analysis) ,Boundary (topology) ,Field (mathematics) ,Dynamical Systems (math.DS) ,01 natural sciences ,37C25 ,Flow (mathematics) ,Relatively compact subspace ,0103 physical sciences ,58C30 (primary) ,FOS: Mathematics ,Vector field ,010307 mathematical physics ,0101 mathematics ,Invariant (mathematics) ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,57S05 ,Mathematics - Abstract
We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on the $C^3$ case of the conjecture., Comment: 50 pages, 16 figures. FInal version to appear in Proceedings of the London Mathematical Society
- Published
- 2020
- Full Text
- View/download PDF