27 results on '"Jean-Francois Dayen"'
Search Results
2. Room temperature optoelectronic devices operating with spin crossover nanoparticles
- Author
-
Marlène Palluel, Bernard Doudin, Jean-Francois Dayen, Nikita Konstantinov, Guillaume Chastanet, Nathalie Daro, Bohdan Kundys, Mohamed Soliman, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The financial support from the Agence Nationale de la Recherche (HEROES ANR-17-CE09-0010-01, MIXES ANR-19-CE09-0028) is acknowledged as well as that from the CNRS, University of Bordeaux, and Nouvelle Aquitaine Region. This work of the Interdisciplinary Thematic Institute QMat, as part of the ITI 2021 2028 program of the University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR 10 IDEX 0002), and by SFRI STRAT’US project (ANR 20 SFRI 0012) and EUR QMat ANR-18-EUR-0016 under the framework of the French Investments for the Future Program. The Institut Universitaire de France (IUF) for financial support., ANR-17-CE09-0010,HEROES,Nanomatériaux hybrides pour une commutation photo-thermique contrôlée(2017), ANR-19-CE09-0028,MIXES,Hétérostructures de van der Waals à dimensions mixtes pour l'électronique et la spintronique(2019), ANR-10-IDEX-0002,UNISTRA,Par-delà les frontières, l'Université de Strasbourg(2010), ANR-20-SFRI-0012,STRAT'US,Façonner les talents en formation et en recherche à l'Université de Strasbourg(2020), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Toulin, Stéphane, Nanomatériaux hybrides pour une commutation photo-thermique contrôlée - - HEROES2017 - ANR-17-CE09-0010 - AAPG2017 - VALID, Hétérostructures de van der Waals à dimensions mixtes pour l'électronique et la spintronique - - MIXES2019 - ANR-19-CE09-0028 - AAPG2019 - VALID, Initiative d'excellence - Par-delà les frontières, l'Université de Strasbourg - - UNISTRA2010 - ANR-10-IDEX-0002 - IDEX - VALID, and Façonner les talents en formation et en recherche à l'Université de Strasbourg - - STRAT'US2020 - ANR-20-SFRI-0012 - SFRI - VALID
- Subjects
Materials science ,Spin states ,Spin transition ,Nanoparticle ,02 engineering and technology ,Conductivity ,010402 general chemistry ,01 natural sciences ,law.invention ,Spin crossover ,law ,Metastability ,Molecule ,General Materials Science ,Electrical and Electronic Engineering ,[CHIM.MATE] Chemical Sciences/Material chemistry ,business.industry ,Graphene ,Process Chemistry and Technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Mechanics of Materials ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Molecular systems can exhibit multi-stimuli switching of their properties, with spin crossover materials having unique magnetic transition triggered by temperature and light, among others. Light-induced room temperature operation is however elusive, as optical changes between metastable spin states require cryogenic temperatures. Furthermore, electrical detection is hampered by the intrinsic low conductivity properties of these materials. We show here how a graphene underlayer reveals the light-induced heating that triggers a spin transition, paving the way for using these molecules for room temperature optoelectronic applications.
- Published
- 2021
- Full Text
- View/download PDF
3. Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays
- Author
-
Audrey Chu, Christophe Delerue, Emmanuel Lhuillier, Charlie Gréboval, Hicham Majjad, Jean-Francois Dayen, Grégory Vincent, Yoann Prado, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Physique - IEMN (PHYSIQUE - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-11-LABX-0058,NIE,Nanostructures en Interaction avec leur Environnement(2011), ANR-10-IDEX-0002,UNISTRA,Par-delà les frontières, l'Université de Strasbourg(2010), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), European Project: 853049,ne2dem, lhuillier, emmanuel, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Nanocristaux Colloïdaux Dopés Infrarouges - - FRONTAL2019 - ANR-19-CE09-0017 - AAPG2019 - VALID, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux - - NITquantum2020 - ANR-20-ASTR-0008 - ASTRID - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanocristaux de perovskite inorganique pour la nanophotonique - - IPER-Nano22018 - ANR-18-CE30-0023 - AAPG2018 - VALID, Sorbonne Universités à Paris pour l'Enseignement et la Recherche - - SUPER2011 - ANR-11-IDEX-0004 - IDEX - VALID, ERC blackQD - blackQD - 756225 - INCOMING, and ne2dem - ne2dem - 853049 - INCOMING
- Subjects
Materials science ,Infrared ,Science ,General Physics and Astronomy ,02 engineering and technology ,Specific detectivity ,010402 general chemistry ,01 natural sciences ,Noise (electronics) ,Article ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,Responsivity ,Delocalized electron ,law ,Electronic devices ,Diffusion (business) ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Nanophotonics and plasmonics ,Multidisciplinary ,business.industry ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystal ,Optoelectronics ,Photolithography ,0210 nano-technology ,business ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] - Abstract
Narrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction. Here, with two steps of optical lithography we design a nanotrench which effective channel length corresponds to 5–10 nanocrystals, matching the carrier diffusion length. We demonstrate responsivity as high as 1 kA W−1, which is 105 times higher than for conventional µm-scale channel length. In this work the associated specific detectivity exceeds 1012 Jones for 2.5 µm peak detection under 1 V at 200 K and 1 kHz, while the time response is as short as 20 µs, making this performance the highest reported for HgTe NC-based extended short-wave infrared detection., Infrared nanocrystals have become an enabling building block for the design of low-cost infrared sensors. Here, Chu et al. design a nanotrench device geometry at the diffusion length limit in HgTe nanocrystals and demonstrate the record high sensing performance operated in the short-wave infrared.
- Published
- 2021
- Full Text
- View/download PDF
4. Electrical read-out of light-induced spin transition in thin film spin crossover/graphene heterostructures
- Author
-
Aditya Singh, Arnaud Brosseau, Talal Mallah, Nikita Konstantinov, Ulrich Nguétchuissi Noumbé, Bohdan Kundys, Bernard Doudin, Hicham Majjad, Marie-Laure Boillot, Jean-Francois Dayen, Stéphane Berciaud, Marc Lenertz, Arthur Tauzin, Diana Dragoe, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Indian Institute of Technology Delhi (IIT Delhi), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Boillot, Marie-Laure, Hétérostructures de van der Waals à dimensions mixtes pour l'électronique et la spintronique - - MIXES2019 - ANR-19-CE09-0028 - AAPG2019 - VALID, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Nanostructures en Interaction avec leur Environnement - - NIE2011 - ANR-11-LABX-0058 - LABX - VALID, Initiative d'excellence - Par-delà les frontières, l'Université de Strasbourg - - UNISTRA2010 - ANR-10-IDEX-0002 - IDEX - VALID, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE09-0028,MIXES,Hétérostructures de van der Waals à dimensions mixtes pour l'électronique et la spintronique(2019), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-11-LABX-0058,NIE,Nanostructures en Interaction avec leur Environnement(2011), and ANR-10-IDEX-0002,UNISTRA,Par-delà les frontières, l'Université de Strasbourg(2010)
- Subjects
Materials science ,Spin states ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Aucun ,Spin transition ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,LIESST ,law.invention ,nanoelectronics ,spin crossover ,law ,Spin crossover ,Molecular film ,Materials Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,molecular switches ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Spintronics ,business.industry ,Graphene ,graphene ,optical device ,Molecular electronics ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Magneto-opto-electronic properties are shown for a hybrid device constructed from a spin crossover (SCO) thin film of a Fe[HB(3,5-(Me)2Pz)3]2 molecular material evaporated over a graphene sensing layer. The principle of electrical detection of the light-induced spin transition in SCO/graphene heterostructures is demonstrated. The switchable spin state of the molecular film is translated into a change of conductance of the graphene channel. The low temperature write/erase process of the conductive remnant states is implemented using two distinct excitation wavelengths, in the red (light-induced spin state trapping, LIESST) region for stabilizing the metastable paramagnetic state, and in the near infrared (reverse-LIESST) region for retrieving the stable diamagnetic state. The bistability of the system is confirmed over a significant temperature window through light-induced thermal hysteresis (LITH). This opens new avenues to study the light-induced spin transition mechanisms exploring the coupling mechanisms between SCO systems and 2D materials, providing electrical readings of the molecules/2D substrate interfaces. These results demonstrate how the electronic states of insulating molecular switches can be stored, read and manipulated by multiple stimuli, while transducing them into low impedance signals, thanks to two-dimensional detectors, revealing the full potential of mixed-dimensional heterostructures for molecular electronics and spintronics.
- Published
- 2021
- Full Text
- View/download PDF
5. Tuning graphene transistors through ad hoc electrostatics induced by a nanometer-thick molecular underlayer
- Author
-
Ather Mahmood, Pierre Braunstein, Jean-Francois Dayen, Alessio Ghisolfi, Bernard Doudin, Hyunju Chang, Lucie Routaboul, Jeong-O Lee, Laetitia Bernard, Cheol-Soo Yang, Seunghun Jang, Tindara Verduci, Paolo Samorì, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Korea Research Institute of Chemical Technology, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Strasbourg, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Institut de Science et d'ingénierie supramoléculaires (ISIS), Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, International Center for Frontier Research in Chemistry (icFRC), National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF_2011-K2A1A5-2011-0031552), ANR-10-IDEX-0002,UNISTRA,Par-delà les frontières, l'Université de Strasbourg(2010), and European Project: 785219,H2020,GrapheneCore2(2018)
- Subjects
Capacitive coupling ,Materials science ,business.industry ,Graphene ,Chimie/Matériaux ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrostatics ,01 natural sciences ,0104 chemical sciences ,law.invention ,Condensed Matter::Materials Science ,Hysteresis ,Dipole ,law ,Electric field ,Molecular film ,Optoelectronics ,General Materials Science ,Physics::Chemical Physics ,0210 nano-technology ,business ,Layer (electronics) - Abstract
We report on the modulation of the electrical properties of graphene-based transistors that mirror the properties of a few nanometers thick layer made of dipolar molecules sandwiched in between the 2D material and the SiO2 dielectric substrate. The chemical composition of the films of quinonemonoimine zwitterion molecules adsorbed onto SiO2 has been explored by means of X-ray photoemission and mass spectroscopy. Graphene-based devices are then fabricated by transferring the 2D material onto the molecular film, followed by the deposition of top source-drain electrodes. The degree of supramolecular order in disordered films of dipolar molecules was found to be partially improved as a result of the electric field at low temperatures, as revealed by the emergence of hysteresis in the transfer curves of the transistors. The use of molecules from the same family, which are suitably designed to interact with the dielectric surface, results in the disappearance of the hysteresis. DFT calculations confirm that the dressing of the molecules by an external electric field exhibits multiple minimal energy landscapes that explain the thermally stabilized capacitive coupling observed. This study demonstrates that the design and exploitation of ad hoc molecules as an interlayer between a dielectric substrate and graphene represents a powerful tool for tuning the electrical properties of the 2D material. Conversely, graphene can be used as an indicator of the stability of molecular layers, by providing insight into the energetics of ordering of dipolar molecules under the effect of electrical gating.
- Published
- 2019
- Full Text
- View/download PDF
6. Two-dimensional van der Waals spinterfaces and magnetic-interfaces
- Author
-
Ivan J. Vera-Marun, Olof Karis, Dr. Soumya Jyoti Ray, Laurent SIMON, M. Venkata Kamalakar, Jean Francois Dayen, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Magnetoresistance ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,law.invention ,symbols.namesake ,National Graphene Institute ,Transition metal ,law ,0103 physical sciences ,spintronics ,010302 applied physics ,Spintronics ,Condensed matter physics ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,Graphene ,graphene ,Dangling bond ,ResearchInstitutes_Networks_Beacons/03/02 ,Heterojunction ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Ferromagnetism ,ResearchInstitutes_Networks_Beacons/national_graphene_institute ,symbols ,van der Waals force ,Advanced materials ,0210 nano-technology - Abstract
Two-dimensional (2D) materials have brought fresh prospects for spintronics, as evidenced by the rapid scientific progress made in this frontier over the past decade. In particular, for charge perpendicular to plane vertical magnetic tunnel junctions, the 2D crystals present exclusive features such as atomic-level thickness control, near-perfect crystallography without dangling bonds, and novel electronic structure-guided interfaces with tunable hybridization and proximity effects, which lead to an entirely new group of spinterfaces. Such crystals also present new ways of integration of atomically thin barriers in magnetic tunnel junctions and an unprecedented means for developing composite barriers with atomic precision. All these new aspects have sparked interest for theoretical and experimental efforts, revealing intriguing spin-dependent transport and spin inversion effects. Here, we discuss some of the distinctive effects observed in ferromagnetic junctions with prominent 2D crystals such as graphene, hexagonal boron nitride, and transition metal dichalcogenides and how spinterface phenomena at such junctions affect the observed magnetoresistance in devices. Finally, we discuss how the recently emerged 2D ferromagnets bring upon an entirely novel category of van der Waals interfaces for efficient spin transmission and dynamic control through exotic heterostructures.
- Published
- 2020
- Full Text
- View/download PDF
7. Reconfigurable 2D/0D p-n Graphene/HgTe Nanocrystal Heterostructure for Infrared Detection
- Author
-
Louis Donald Notemgnou Mouafo, Ulrich Nguétchuissi Noumbé, Luis E. Parra López, Audrey Chu, Clément Livache, Jean-Francois Dayen, Abdelkarim Ouerghi, Charlie Gréboval, Bernard Doudin, Hicham Majjad, Julien Chaste, Stéphane Berciaud, Emmanuel Lhuillier, chaste, julien, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), lhuillier, emmanuel, Sorbonne Universités à Paris pour l'Enseignement et la Recherche - - SUPER2011 - ANR-11-IDEX-0004 - IDEX - VALID, Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique - - H2DH2015 - ANR-15-CE24-0016 - AAPG2015 - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanocristaux de perovskite inorganique pour la nanophotonique - - IPER-Nano22018 - ANR-18-CE30-0023 - AAPG2018 - VALID, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Nanocristaux Colloïdaux Dopés Infrarouges - - FRONTAL2019 - ANR-19-CE09-0017 - AAPG2019 - VALID, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, ERC blackQD - blackQD - 756225 - INCOMING, ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
Electron mobility ,Materials science ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Capacitance ,HgTe ,law.invention ,[PHYS] Physics [physics] ,law ,General Materials Science ,gate induced diode ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,narrow band gap nanocrystals ,Photocurrent ,[PHYS]Physics [physics] ,business.industry ,Graphene ,graphene ,General Engineering ,Heterojunction ,infrared detection ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Photodiode ,Semiconductor ,Optoelectronics ,0210 nano-technology ,business ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] ,Dark current - Abstract
International audience; Nanocrystals are promising building blocks for the development of low-cost infrared optoelectronics. Gating a nanocrystal film in a phototransistor geometry is commonly proposed as a strategy to tune the signal to noise ratio by carefully controlling the carrier density within the semiconductor. However, the performance improvement has so far been quite marginal. With metallic electrodes, the gate dependence of the photocurrent follows the gate-induced change of the dark current. Graphene presents key advantages: (i) infrared transparency that allows back-side illumination, (ii) vertical electric field transparency and (iii) carrier selectivity under gate bias. Here, we investigate a configuration of 2D/0D infrared photodetectors taking advantage of a high capacitance ionic glass gate, large scale graphene electrodes, and a HgTe nanocrystal layer of high carrier mobility. The introduction of graphene electrodes combined with ionic glass enables to reconfigure selectively the HgTe nanocrystals and the graphene electrodes between electrons (n) and holes (p) doped states. We unveil that this functionality enables to design a 2D/0D p-n junction that expands throughout the device, with a built-in electric field that assists charge dissociation. We demonstrate that in this specific configuration, the signal to noise ratio for infrared photodetection can be enhanced by two orders of magnitude, and that photovoltaic operation can be achieved. The detectivity now reaches 109 Jones while the device only absorbs 8% of the incident light. Additionally, the time response of the device is fast (
- Published
- 2020
- Full Text
- View/download PDF
8. Field effect transistor and photo transistor of narrow band gap nanocrystal arrays using ionic glasses
- Author
-
Nicolas Goubet, Ulrich Nguétchuissi Noumbé, Yoann Prado, Charlie Gréboval, Audrey Chu, Emmanuel Lhuillier, Abdelkarim Ouerghi, Bertille Martinez, Sandrine Ithurria, Junling Qu, Hervé Aubin, Julien Ramade, Clément Livache, Jean-Francois Dayen, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,infrared nanocrystal ,Bioengineering ,02 engineering and technology ,Photodetection ,Dielectric ,Capacitance ,HgTe ,law.invention ,field effect transistor ,Operating temperature ,law ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photocurrent ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Photodiode ,Nanocrystal ,ionic glass ,infrared ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,solid state gating ,LaF3 ,ionic glasses ,HgTe nanocrystal - Abstract
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
- Published
- 2019
- Full Text
- View/download PDF
9. Phototransport in colloidal nanoplatelets array
- Author
-
Daniel O. Thomas, Sandrine Ithurria, Adrien Robin, Hervé Aubin, Jean-Francois Dayen, Benoit Dubertret, Emmanuel Lhuillier, lhuillier, emmanuel, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
photodetection ,noise ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Materials science ,Passivation ,nanoplatelets ,quantum dot ,Nanotechnology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Photodetection ,Condensed Matter Physics ,7. Clean energy ,Photodiode ,law.invention ,Colloid ,Nanocrystal ,law ,Quantum dot ,Particle ,semiconductor nanoparticles ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Thin film ,electrolyte gating ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] - Abstract
Colloidal nanocrystals are promising materials for achieving low cost optoelectronic devices. In this paper, we focus on the transport and photo transport properties of 2D nanoplatelet thin films and their use for photodetection. We present evidence that improved performances relies on good trap passivation as well as overcoming the inherent large exciton binding energy of the 2D NPL. This can be achieved using a phototransistor configuration with transport at the single particle scale (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2015
- Full Text
- View/download PDF
10. Room temperature dry processing of patterned CVD graphene devices
- Author
-
Bernard Doudin, Cheol-Soo Yang, Serin Park, Jean-Francois Dayen, Stéphane Berciaud, Jeong-O Lee, M. Venkata Kamalakar, Dominik Metten, and Ather Mahmood
- Subjects
Organic electronics ,Materials science ,Graphene ,Nanotechnology ,General Chemistry ,Quantum Hall effect ,Monolayer graphene ,law.invention ,Planar ,law ,General Materials Science ,Cvd graphene ,Lithography ,Single layer - Abstract
We present a strategy for avoiding polymeric residues, excessive heating and solvent exposure when transforming large area transferred CVD graphene single layer films into series of planar devices. Such dry process is a key prerequisite for chemical functionalization applications or for organic electronics compatibility, and opens the possibility to integrate graphene electrodes with thermally or chemically sensitive materials, as well as substrates incompatible with lithography processing. Patterning and metal evaporation are performed through a multi-step mechanical stencils methodology, and low temperatures magneto transport measurements are used to validate devices with preserved electrical fingerprints of graphene. This is particularly critical for the argon beam milling process step. Remarkably, the Quantum Hall signature of our devices remains robust, even though defective sample edges result from the beam exposure. Shubnikov-de Hass (SdH) oscillations and weak (anti-) localization signatures of monolayer graphene confirm the excellent intrinsic properties of such processed samples, rarely observed on CVD-processed devices.
- Published
- 2015
- Full Text
- View/download PDF
11. Nanoplatelets Bridging a Nanotrench: A New Architecture for Photodetectors with Increased Sensitivity
- Author
-
Bernard Doudin, Emmanuel Lhuillier, Daniel O. Thomas, Jean-Francois Dayen, Adrien Robin, Benoit Dubertret, lhuillier, emmanuel, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
Materials science ,Exciton ,Photodetector ,Bioengineering ,Nanotechnology ,Photodetection ,law.invention ,Responsivity ,law ,General Materials Science ,semiconductor nanoparticles ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,photodetection ,[CHIM.MATE] Chemical Sciences/Material chemistry ,noise TOC ,Mechanical Engineering ,nanoplatelets ,Transistor ,quantum dot ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Condensed Matter Physics ,Quantum dot ,Electrode ,electrolyte gating ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] ,Order of magnitude - Abstract
International audience; Interparticle charge hopping severely limits the integration of colloidal nanocrystals films for optoelectronic device applications. We propose here to overcome this problem by using high aspect ratio interconnects made of wide electrodes separated by a few tens of namometers, a distance matching the size of a single nanoplatelet. The semiconducting CdSe/CdS nanoplatelet coupling with such electrodes allows an efficient electron–hole pair dissociation despite the large binding energy of the exciton, resulting in optimal photoconductance responsivity. We report the highest responsivity obtained so far for CdSe colloidal material with values reaching kA·W–1, corresponding to eight decades of enhancement compared to usual micrometer-scaled architectures. In addition, a decrease of 1 order of magnitude of the current noise is observed, revealing the reduced influence of the surface traps on transport. The nanotrench geometry provides top access to ion gel electrolyte gating, allowing for a photoresponsive transistor with 104 on/off ratio. A simple analytical model reproduces the device behavior and underlines the key parameters related to its performance.
- Published
- 2015
- Full Text
- View/download PDF
12. Conductance Oscillations in a Graphene/Nanocluster Hybrid Material: Toward Large-Area Single-Electron Devices
- Author
-
Yves Henry, D. Halley, Louis Donald Notemgnou Mouafo, Stéphane Berciaud, Jean-Francois Dayen, Bernard Doudin, Guillaume Froehlicher, Florian Godel, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and univOAK, Archive ouverte
- Subjects
Materials science ,Oxide ,Nanoparticle ,chemistry.chemical_element ,FOS: Physical sciences ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Nanoclusters ,law.invention ,chemistry.chemical_compound ,Aluminium ,law ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,General Materials Science ,010306 general physics ,Condensed Matter - Materials Science ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,Mechanical Engineering ,Conductance ,Materials Science (cond-mat.mtrl-sci) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,chemistry ,Mechanics of Materials ,0210 nano-technology ,Hybrid material ,Layer (electronics) - Abstract
Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is observed for a record junction area of up to 100 mu m(2) containing millions of metal islands. Such graphene-metal nanocluster hybrid materials offer new prospects for single-electron electronics.
- Published
- 2016
- Full Text
- View/download PDF
13. Anisotropic Magneto-Coulomb Properties of 2D-0D Heterostructure Single Electron Device
- Author
-
L. Simon, Hicham Majjad, Louis Donald Notemgnou Mouafo, Pierre Seneor, Samar Hajjar-Garreau, Florian Godel, Georgian Melinte, Ovidiu Ersen, Jean-Francois Dayen, Bruno Dlubak, Bernard Doudin, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse (IS2M), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
- Subjects
Materials science ,Magnetoresistance ,02 engineering and technology ,01 natural sciences ,Nanoclusters ,law.invention ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Quantum tunnelling ,Spintronics ,business.industry ,Graphene ,Mechanical Engineering ,Coulomb blockade ,Heterojunction ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Ferromagnetism ,Mechanics of Materials ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Fabrication and spintronics properties of 2D–0D heterostructures are reported. Devices based on graphene (“Gr”)–aluminium nanoclusters heterostructures show robust and reproducible single‐electron transport features, in addition to spin‐dependent functionality when using a top magnetic electrode. The magnetic orientation of this single ferromagnetic electrode enables the modulation of the environmental charge experienced by the aluminium nanoclusters. This anisotropic magneto‐Coulomb effect, originating from spin–orbit coupling within the ferromagnetic electrode, provides tunable spin valve‐like magnetoresistance signatures without the requirement of spin coherent charge tunneling. These results extend the capability of Gr to act both as electrode and as a platform for the growth of 2D–0D mixed‐dimensional van der Waals heterostructures, providing magnetic functionalities in the Coulomb blockade regime on scalable spintronic devices. These heterostructures pave the way towards novel device architectures at the crossroads of 2D material physics and spin electronics.
- Published
- 2018
- Full Text
- View/download PDF
14. Current crowding issues on nanoscale planar organic transistors for spintronic applications
- Author
-
Guillaume Chaumy, Eloïse Devaux, Nicolas Leclerc, Bernard Doudin, Tindara Verduci, Jean-Francois Dayen, Paolo Samorì, Marc-Antoine Stoeckel, Emanuele Orgiu, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Science et d'ingénierie supramoléculaires (ISIS), Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Institut National de la Recherche Scientifique [Québec] (INRS)
- Subjects
Materials science ,Magnetoresistance ,Spin valve ,Current crowding ,Bioengineering ,02 engineering and technology ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,General Materials Science ,[NLIN]Nonlinear Sciences [physics] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electrical and Electronic Engineering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Spin-½ ,[PHYS]Physics [physics] ,Organic electronics ,Spintronics ,business.industry ,Chimie/Matériaux ,Mechanical Engineering ,Transistor ,General Chemistry ,021001 nanoscience & nanotechnology ,Mechanics of Materials ,Spin diffusion ,Optoelectronics ,0210 nano-technology ,business ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices.
- Published
- 2018
- Full Text
- View/download PDF
15. Transition from Coulomb blockade to insulator regime in multiwall carbon nanotubes
- Author
-
Jean-Eric Wegrowe, M. Sanquer, Travis Wade, Jean-Francois Dayen, and X. Jehl
- Subjects
Materials science ,Condensed matter physics ,Transition temperature ,Coulomb blockade ,Insulator (electricity) ,Carbon nanotube ,Activation energy ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Condensed Matter Physics ,Power law ,Electronic, Optical and Magnetic Materials ,Threshold voltage ,law.invention ,law ,Voltage - Abstract
An experimental study of electronic transport at very low temperature of multiwall carbon nanotubes is presented. We observed two manifestations of a transition from a Coulomb blockade regime to an insulator regime. The first one is on the temperature dependence of the sample resistance, changing from a power law regime to an activated law at a transition temperature T C . The second one manifests itself below T C in the dV/dI(V) profile: at a threshold voltage V C the resistance changes abruptly from an insulating state to a Coulomb blockade regime characterized by a power law dependence on the voltage. Influence of disorder on Coulomb blockade regime is also enlightened.
- Published
- 2006
- Full Text
- View/download PDF
16. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions
- Author
-
Bernard Doudin, M. Venkata Kamalakar, D. Halley, Yves Henry, Florian Godel, and Jean-Francois Dayen
- Subjects
Physics ,Fabrication ,Physics and Astronomy (miscellaneous) ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Graphene ,Aucun ,FOS: Physical sciences ,Biasing ,Epitaxy ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,law.invention ,Tunnel magnetoresistance ,Condensed Matter::Materials Science ,Ferromagnetism ,law ,Condensed Matter::Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Electrode ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,business ,Electronic band structure - Abstract
We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface.
- Published
- 2014
17. Epitaxy of MgO magnetic tunnel barriers on epitaxial graphene
- Author
-
D. Halley, Yves Henry, Florian Godel, Stéphane Berciaud, D. Vignaud, Emmanuelle Pichonat, Hicham Majjad, Jean-Francois Dayen, Dominik Metten, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
Materials science ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Epitaxy ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,General Materials Science ,Dewetting ,Electrical and Electronic Engineering ,010306 general physics ,Quantum tunnelling ,Spintronics ,Graphene ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Ferromagnetism ,Mechanics of Materials ,Optoelectronics ,0210 nano-technology ,business ,Graphene nanoribbons ,Molecular beam epitaxy - Abstract
Epitaxial growth of electrodes and tunnel barriers on graphene is one of the main technological bottlenecks for graphene spintronics. In this paper, we demonstrate that MgO(111) epitaxial tunnel barriers, one of the prime candidates for spintronic application, can be grown by molecular beam epitaxy on epitaxial graphene on SiC(0001). Ferromagnetic metals (Fe, Co, Fe20Ni80) were epitaxially grown on top of the MgO barrier, thus leading to monocrystalline electrodes on graphene. Structural and magnetic characterizations were performed on these ferromagnetic metals after annealing and dewetting: they form clusters with a 100 nm typical lateral width, which are mostly magnetic monodomains in the case of Fe. This epitaxial stack opens the way to graphene spintronic devices taking benefits from a coherent tunnelling current through the epitaxial MgO/graphene stack.
- Published
- 2013
- Full Text
- View/download PDF
18. Nanotrenches: An Optical Lithography Process for High-Aspect-Ratio sub-100 nm Gaps
- Author
-
Bernard Doudin and Jean Francois Dayen
- Subjects
Materials science ,business.industry ,law ,Process (computing) ,Optoelectronics ,Photolithography ,business ,law.invention - Published
- 2012
- Full Text
- View/download PDF
19. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects
- Author
-
Mounir Maaloum, Emilie Moulin, Frédéric Niess, Bernard Doudin, Jean Baptiste Beaufrand, Nicolas Giuseppone, Silvia Zanettini, Vina Faramarzi, Jean-Francois Dayen, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Moulin, Emilie
- Subjects
Solid-state chemistry ,Light ,Polymers ,General Chemical Engineering ,Inorganic chemistry ,Nanowire ,Carbon nanotube ,Conductivity ,Microscopy, Atomic Force ,law.invention ,Electricity ,law ,Electric field ,chemistry.chemical_classification ,[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,business.industry ,Chemistry ,Nanowires ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Semiconductor device ,Polymer ,[CHIM.ORGA] Chemical Sciences/Organic chemistry ,Metals ,Optoelectronics ,business - Abstract
International audience; The construction of soft and processable organic material able to display metallic conduction properties—a large density of freely moving charges—is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 103 S m−1) and a low interface resistance (
- Published
- 2011
- Full Text
- View/download PDF
20. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics
- Author
-
Neil T. Kemp, Guillaume Dalmas, Hicham Majjad, Jean-Francois Dayen, Bernard Doudin, P Lunca Popa, and Vina Faramarzi
- Subjects
Fabrication ,Nanostructure ,Materials science ,Mechanical Engineering ,Microfluidics ,Molecular electronics ,Bioengineering ,Nanotechnology ,General Chemistry ,Electrochemical Techniques ,Equipment Design ,Lab-on-a-chip ,Microfluidic Analytical Techniques ,law.invention ,Nanostructures ,Atomic radius ,Mechanics of Materials ,law ,Lab-On-A-Chip Devices ,Electrode ,Molecule ,General Materials Science ,Electrical and Electronic Engineering - Abstract
A versatile tool for electrochemical fabrication of heteronanojunctions with nanocontacts made of a few atoms and nanogaps of molecular spacing is presented. By integrating microfluidic circuitry in a lab-on-chip approach, we keep control of the electrochemical environment in the vicinity of the nanojunction and add new versatility for exchanging and controlling the junction's medium. Nanocontacts made of various materials by successive local controlled depositions are demonstrated, with electrical properties revealing sizes reaching a few atoms only. Investigations on benchmark molecular electronics material, trapped between electrodes, reveal the possibility to create nanogaps of size matching those of molecules. We illustrate the interest of a microfluidic approach by showing that exposure of a fabricated molecular junction to controlled high solvent flows can be used as a reliability criterion for the presence of molecular entities in a gap.
- Published
- 2011
21. Nanotrench for nano and microparticle electrical interconnects
- Author
-
Neil T. Kemp, Bernard Doudin, Sylvie Begin-Colin, Vina Faramarzi, Benoit P. Pichon, Jean-Francois Dayen, Hicham Majjad, M. Barbero, and Matthias Pauly
- Subjects
Resistive touchscreen ,Fabrication ,Nanostructure ,Materials science ,Mechanical Engineering ,Nanoparticle ,Bioengineering ,Nanotechnology ,General Chemistry ,law.invention ,Mechanics of Materials ,law ,Nano ,General Materials Science ,Electrical and Electronic Engineering ,Electric current ,Photolithography ,Electronic circuit - Abstract
We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10(4)) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA.
- Published
- 2010
22. Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots
- Author
-
Dimitry Golubev, X. Jehl, Costel Sorin Cojocaru, Jean-Eric Wegrowe, Travis Wade, M. Sanquer, G. Rizza, Didier Pribat, Jean-Francois Dayen, Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Karlsruhe Institute of Technology (KIT), NanoMaDe, Laboratoire de physique des interfaces et des couches minces [Palaiseau] (LPICM), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Département de Recherche Fondamentale sur la Matière Condensée (DRFMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Forschungszentrum Karlsruhe, Institut für Nanotechnologie, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Materials science ,Nanowire ,02 engineering and technology ,Carbon nanotube ,01 natural sciences ,law.invention ,Electrical resistivity and conductivity ,law ,0103 physical sciences ,010306 general physics ,Instrumentation ,Condensed matter physics ,business.industry ,Coulomb blockade ,Conductance ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Electronic, Optical and Magnetic Materials ,Coherence length ,Semiconductor ,Quantum dot ,Physical Sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,business - Abstract
International audience; A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one-dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires, and silicon nanowires. It is shown that the Coulomb blockade regime dominates the electronic transport below 50 K, together with weak and strong localization effects. In the Coulomb blockade regime, a scaling law of the conductance measured as a func- tion of the temperature and the voltage is systematically observed. This allows a single scaling parameter α to be defined. This parameter accounts for the specific realization of the "disorder", and plays the role of a fingerprint for each sample. Correlations between α and the conductance measured as a function of temperature and voltage, as a function of the perpendicular magnetic field, and as a function of the temperature and voltage in the localized regime below 1 K have been performed. Three universal laws are reported. They relate the coefficient α (1) to the normalized Coulomb blockade conductance GT (α), (2) to the phase coherence length lφ (α), and (3) to the activation energy Ea(α). These observations suggest a description of the wires and tubes in terms of a chain of quantum dots; the wires and tubes break into a series of islands. The quantum dots are defined by conducting islands with a typical length on the order of the phase coherence length separated by poorly conducting regions (low density of carriers or potential barriers due to defects). A corresponding model is developed in order to put the three universal laws in a common frame.
- Published
- 2009
- Full Text
- View/download PDF
23. Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons
- Author
-
Jean-Francois Dayen, Isabelle Roch-Jeune, Dmitry S. Golubev, Philippe Salles, Ather Mahmood, Erik Dujardin, Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Karlsruher Institut für Technologie (KIT), P. N. Lebedev Physical Institute of the Russian Academy of Sciences [Moscow] (LPI RAS), Russian Academy of Sciences [Moscow] (RAS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Materials science ,02 engineering and technology ,010402 general chemistry ,Microscopy, Atomic Force ,01 natural sciences ,Focused ion beam ,law.invention ,Ion ,Biomaterials ,law ,General Materials Science ,Graphite ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Lithography ,Organic electronics ,Ions ,Graphene ,business.industry ,Temperature ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanostructures ,Microscopy, Electron, Scanning ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,Graphene nanoribbons ,Biotechnology - Abstract
A resist-less nanofabrication method, based on focused ion beam lithography, for connecting and tailoring a nanometer-scale planar device in ultrathin graphitic disks is demonstrated by producing 50-nm-wide double side-gated transistor devices (see image). Experiments and theory suggest that the behavior of the nanoribbons can be interpreted as a Coulomb blockade in a linear array of tunnel junctions between graphene islands.
- Published
- 2008
- Full Text
- View/download PDF
24. Nanoporous alumina wire templates for surrounding-gate nanowire transistors
- Author
-
Al Dughaim Mohammed, Didier Pribat, Jean-Eric Wegrowe, Xavier Hoffer, Travis Wade, Jean-Francois Dayen, Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Jouéo, Bernard
- Subjects
Materials science ,Fabrication ,Nanowire ,chemistry.chemical_element ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Electrochemistry ,01 natural sciences ,law.invention ,law ,Aluminium ,0103 physical sciences ,General Materials Science ,Nanowire transistors ,Electrical and Electronic Engineering ,010302 applied physics ,Nanoporous ,Mechanical Engineering ,Transistor ,General Chemistry ,021001 nanoscience & nanotechnology ,Template ,chemistry ,Mechanics of Materials ,0210 nano-technology - Abstract
International audience; Aluminium wires are electrochemically sculptured into bi-directional templates for the templated growth and contacting of nanowires as three terminal devices. The use of this nanostructured template is demonstrated by a ZnO nanowire surrounding-gate field-effect transistor. This bottom-up approach to a 3D nanowire transistor is unique in that it can be almost entirely fabricated in a beaker using aqueous, room temperature electrochemistry. The fabrication procedures and preliminary device characteristics of this new approach to nanowire transistors are shown
- Published
- 2007
25. Bi-directional porous alumina templates for nanowire field-effect transistors
- Author
-
Jean-Eric Wegrowe, Al Dughaim Mohammed, Xavier Hoffer, Jean-Francois Dayen, Travis Wade, and Fahad Humel
- Subjects
Materials science ,Anodizing ,business.industry ,Nanoporous ,Transistor ,Nanowire ,law.invention ,Template ,law ,Electrode ,Optoelectronics ,Field-effect transistor ,business ,Layer (electronics) - Abstract
Using readily available materials and equipment we are able to sculpture aluminium wires into cylindrical, bi-directional templates for the synthesis and contacting of nanowires as field-effect transistors. The nanowire template is made by partial anodization of the wire perpendicular to its axis as an isolating layer for a gate electrode, vapour deposition of a metal on this layer as a gate, cutting the wire perpendicular to its axis, and finally anodizing the newly exposed area parallel to the wire axis as a template for nanowires. This results in a nanowire template surrounded by a gate electrode that is isolated from the template by the first anodisation layer.The utility of this structure is demonstrated by a ZnO nanowire field-effect transistor. The ZnO was made by electrodeposition of Zn nanowires in the interior nanoporous template during which an anodic pulse was applied to form a layer of ZnO in the middle of the zinc nanowires. The IV and transfer plots indicate that the ZnO is p-type in depletion mode.This 3-D transistor is unique in that it can be totally fabricated in a beaker without the need for costly clean room and lithography facilities. The ease and low cost of this new approach to nanodevices will have the effect of liberating nanoscience for scientists of moderate means. As a result this will open nanoscience to new ideas and more inputs.
- Published
- 2005
- Full Text
- View/download PDF
26. Gate tunable vertical geometry phototransistor based on infrared HgTe nanocrystals
- Author
-
Corentin Dabard, Adrien Khalili, Audrey Chu, Abdelkarim Ouerghi, Jean-Francois Dayen, Charlie Gréboval, Ulrich Nguétchuissi Noumbé, Yoann Prado, Silviu Colis, Julien Chaste, Emmanuel Lhuillier, Tung Huu Dang, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Nanostructures et optique (INSP-E4), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), European Project: 756225,blackQD, lhuillier, emmanuel, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Nanocristaux Colloïdaux Dopés Infrarouges - - FRONTAL2019 - ANR-19-CE09-0017 - AAPG2019 - VALID, Sorbonne Universités à Paris pour l'Enseignement et la Recherche - - SUPER2011 - ANR-11-IDEX-0004 - IDEX - VALID, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanocristaux de perovskite inorganique pour la nanophotonique - - IPER-Nano22018 - ANR-18-CE30-0023 - AAPG2018 - VALID, and ERC blackQD - blackQD - 756225 - INCOMING
- Subjects
Fabrication ,Materials science ,Physics and Astronomy (miscellaneous) ,Infrared ,gate effect ,Geometry ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,law.invention ,Stack (abstract data type) ,law ,Electric field ,0103 physical sciences ,photodiode ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Diode ,010302 applied physics ,[PHYS]Physics [physics] ,Graphene ,021001 nanoscience & nanotechnology ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.TRON] Engineering Sciences [physics]/Electronics ,Active layer ,Photodiode ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,mixed dimensionalities device ,infrared ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,HgTe nanocrystal - Abstract
International audience; Infrared nanocrystals are promising building blocks for the design of low-cost infrared sensors. Vertical geometry diode is, among possible geometries, the one that has led to the best performance so far. However, this geometry suffers from a lack of tunability after its fabrication, slowing down possible improvements. Here, we demonstrate gate control on a vertical diode in which the active layer is made of HgTe NCs absorbing in the extended short-wave infrared (2.5 μm). To reach this goal, we take advantage of the electrostatic transparency of graphene, combined with the high capacitance LaF3 ionic glass to design a gate tunable photodiode. The latter behaves as a work function-tunable electrode which lets the gate-induced electric field tune the carrier density within the nanocrystal film. In particular, we show that the gate allows to tune the band profile leading to more efficient charge extraction and thus an enhanced photoresponse (×4 compared to the device with a floating gate). This work also demonstrates that photoelectron extraction can still be improved in the existing diode, by better controlling the doping profile of the stack.This project is supported by a ERC starting grant blackQD (Grant No. 756225). We acknowledge the use of clean-room facilities from the “Centrale de Proximité Paris-Centre” and from the STnano platform. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (Grant dopQD). This work was supported by French state funds managed by the ANR within the Investissements d'Avenir programme by Labex Matisse (No. ANR-11-IDEX-0004-02) and Labex NIE (Nos. ANR-11-LABX-0058 and ANR-10-IDEX-0002-02). A.N.R. also funded grants FRONTAL (No. ANR-19-CE09-0017), IPER-Nano2 (No. ANR-18CE30-0023-01), Copin (No. ANR-19-CE24-0022), and Graskop (No. ANR-19-CE09-0026), NITQuantum. A.C. thanks Agence Innovation Defense for the Ph.D. funding.
- Full Text
- View/download PDF
27. Ionic Glass–Gated 2D Material–Based Phototransistor: MoSe 2 over LaF 3 as Case Study
- Author
-
Abdelkarim Ouerghi, Ulrich Nguétchuissi Noumbé, Emmanuel Lhuillier, Jean-Francois Dayen, Bernard Doudin, Charlie Gréboval, Clément Livache, Thibault Brulé, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), HORIBA Europe Research Center [Palaiseau] (Horiba), HORIBA Scientific [France], Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2010), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), European Project: 756225,blackQD, lhuillier, emmanuel, MATerials, InterfaceS, Surfaces, Environment - - MATISSE2010 - ANR-10-LABX-0067 - LABX - VALID, Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique - - H2DH2015 - ANR-15-CE24-0016 - AAPG2015 - VALID, Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge - - COPIN2019 - ANR-19-CE24-0022 - AAPG2019 - VALID, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, Nanocristaux Colloïdaux Dopés Infrarouges - - FRONTAL2019 - ANR-19-CE09-0017 - AAPG2019 - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanocristaux de perovskite inorganique pour la nanophotonique - - IPER-Nano22018 - ANR-18-CE30-0023 - AAPG2018 - VALID, ERC blackQD - blackQD - 756225 - INCOMING, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Ionic bonding ,02 engineering and technology ,Electrolyte ,Gating ,010402 general chemistry ,01 natural sciences ,Capacitance ,Ion ,law.invention ,two dimensional material ,Biomaterials ,field effect transistor) ,law ,Electrochemistry ,photodetector ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,business.industry ,Doping ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Photodiode ,phototransistor ,ionic glass ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Modulating the carrier density of 2D materials is pivotal to tailor their electrical properties, with novel physical phenomena expected to occur at a higher doping level. Here, the use of ionic glass as a high capacitance gate is explored to develop a 2D material–based phototransistor operated with a higher carrier concentration up to 5 × 1013 cm−2, using MoSe2 over LaF3 as an archetypal system. Ion glass gating reveals to be a powerful technique combining the high carrier density of electrolyte gating methods while enabling direct optical addressability impeded with usual electrolyte technology. The phototransistor demonstrates ION/IOFF ratio exceeding five decades and photoresponse times down to 200 µs, up to two decades faster than MoSe2 phototransistors reported so far. Careful phototransport analysis reveals that ionic glass gating of 2D materials allows tuning the nature of the carrier recombination processes, while annihilating the traps' contribution in the electron injection regime. This remarkable property results in a photoresponse that can be modulated electrostatically by more than two orders of magnitude, while at the same time increasing the gain bandwidth product. This study demonstrates the potential of ionic glass gating to explore novel photoconduction processes and alternative architectures of devices.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.