1. Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation
- Author
-
Aviva Szpirglas, Marie-Françoise Roy, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Aviva Szpirglas, Univ Poitiers, CNRS, LMA-UMR 7348, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mathématiques et Applications ( LMA-Poitiers ), Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,Root (chord) ,MathematicsofComputing_NUMERICALANALYSIS ,010103 numerical & computational mathematics ,Mathematical proof ,01 natural sciences ,[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC] ,Combinatorics ,13P15 ,Mathematics - Algebraic Geometry ,Hermite interpolation ,Simple (abstract algebra) ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,FOS: Mathematics ,Computer Science::Symbolic Computation ,0101 mathematics ,Remainder ,Algebraic Geometry (math.AG) ,Mathematics ,Sequence ,Algebra and Number Theory ,010102 general mathematics ,subresultants ,Sylvester double sums ,generalized Vandermonde determinants ,multivariateHermiteinterpolation ,Vandermonde matrix ,multivariate Hermite interpolation ,Computational Mathematics ,13P15, 13P05 ,Constant (mathematics) ,Sylvesterdoublesums - Abstract
International audience; Sylvester doubles sums, introduced first by Sylvester (see Sylvester (1840, 1853)), are symmetric expressions of the roots of two polynomials. Sylvester’s definition of double sums makes no sense in the presence of multiple roots, since the definition involves denominators that vanish when there are multiple roots. The aim of this paper is to give a new definition of Sylvester double sums making sense in the presence of multiple roots, which coincides with the definition by Sylvester in the case of simple roots, to prove that double sums indexed by (a, b) are equal up to a constant if they share the same value for a+b, as well a proof of the relationship between double sums and subresultants, i.e. that they are equal up to a constant. In the simple root case, proofs of these properties are already known (see Lascoux and Pragacz (2002); d’Andrea et al. (2007); Roy and Szpirglas (2011)). The more general proofs given here are using generalized Vandermonde determinants and symmetric multivariate Hermite interpolation as well as an induction on the length of the remainder sequence of P and Q.
- Published
- 2020
- Full Text
- View/download PDF