1. A Cartesian immersed boundary method based on 1D flow reconstructions for high-fidelity simulations of incompressible turbulent flows around moving objects
- Author
-
Athanasios E. Giannenas, Nikolaos Bempedelis, Felipe N. Schuch, Sylvain Laizet, Engineering & Physical Science Research Council (EPSRC), and Engineering & Physical Science Research Council (E
- Subjects
Immersed boundary method ,Technology ,VORTEX-INDUCED VIBRATIONS ,Science & Technology ,MESH GENERATION ,General Chemical Engineering ,Fluids & Plasmas ,SCHEMES ,General Physics and Astronomy ,Mechanics ,09 Engineering ,GRID METHOD ,High-order finite-difference schemes ,FLUID-STRUCTURE INTERACTION ,2 CYLINDERS ,TANDEM ,Physical Sciences ,Thermodynamics ,Mechanical Engineering & Transports ,LARGE-EDDY SIMULATIONS ,Physical and Theoretical Chemistry ,NUMERICAL-SIMULATION ,Fluid-structure interactions ,FINITE-DIFFERENCE METHODS - Abstract
The aim of the present numerical study is to show that the recently developed Alternating Direction Reconstruction Immersed Boundary Method (ADR-IBM) (Giannenas and Laizet in Appl Math Model 99:606–627, 2021) can be used for Fluid–Structure Interaction (FSI) problems and can be combined with an Actuator Line Model (ALM) and a Computer-Aided Design (CAD) interface for high-fidelity simulations of fluid flow problems with rotors and geometrically complex immersed objects. The method relies on 1D cubic spline interpolations to reconstruct an artificial flow field inside the immersed object while imposing the appropriate boundary conditions on the boundaries of the object. The new capabilities of the method are demonstrated with the following flow configurations: a turbulent channel flow with the wall modelled as an immersed boundary, Vortex Induced Vibrations (VIVs) of one-degree-of-freedom (2D) and two-degree-of-freedom (3D) cylinders, a helicopter rotor and a multi-rotor unmanned aerial vehicle in hover and forward motion. These simulations are performed with the high-order fluid flow solver which is based on a 2D domain decomposition in order to exploit modern CPU-based supercomputers. It is shown that the ADR-IBM can be used for the study of FSI problems and for high-fidelity simulations of incompressible turbulent flows around moving complex objects with rotors.
- Published
- 2022