1. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies
- Author
-
Haojia Wu, Romer Gonzalez Villalobos, Xiang Yao, Dermot Reilly, Tao Chen, Matthew Rankin, Eugene Myshkin, Matthew D. Breyer, and Benjamin D. Humphreys
- Subjects
Mice ,Diabetes Mellitus, Type 2 ,Physiology ,Cardiovascular Diseases ,Animals ,Diabetic Nephropathies ,Cell Biology ,Transcriptome ,Molecular Biology ,Sodium-Glucose Transporter 2 Inhibitors ,Article - Abstract
Diabetic kidney disease (DKD) occurs in ∼40% of patients with diabetes and causes kidney failure, cardiovascular disease, and premature death. We analyzed the response of a murine DKD model to five treatment regimens using single-cell RNA sequencing (scRNA-seq). Our atlas of ∼1 million cells revealed a heterogeneous response of all kidney cell types both to DKD and its treatment. Both monotherapy and combination therapies targeted differing cell types and induced distinct and non-overlapping transcriptional changes. The early effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) on the S1 segment of the proximal tubule suggest that this drug class induces fasting mimicry and hypoxia responses. Diabetes downregulated the spliceosome regulator serine/arginine-rich splicing factor 7 (Srsf7) in proximal tubule that was specifically rescued by SGLT2i. In vitro proximal tubule knockdown of Srsf7 induced a pro-inflammatory phenotype, implicating alternative splicing as a driver of DKD and suggesting SGLT2i regulation of proximal tubule alternative splicing as a potential mechanism of action for this drug class.
- Published
- 2021