1. Microstructure and impact behavior of Mg-4Al-5RE-xGd cast magnesium alloys.
- Author
-
Wei, Jie, Wang, Qudong, Cai, Huisheng, Ebrahimi, Mahmoud, and Lei, Chuan
- Subjects
GADOLINIUM ,SAND casting ,MICROSTRUCTURE ,DIE castings ,STRAIN rate ,DUCTILE fractures ,MAGNESIUM alloys - Abstract
• Gd addition to the Mg-4Al-5RE alloys produced by various casting methods can refine the grains and modify the morphology of the acicular Al11RE3 phase to the short rod-like. • Gd addition increases the impact toughness due to the lower tendency of the modified second phases toward crack initiation. • The fine-grained HPDC alloys have an inconsistent strain rate sensitivity during the impact event. • The fine-grained HPDC alloys have excellent impact toughness but show an insufficient plastic deformation capacity. This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd (RE represents La-Ce mischmetal; x = 0, 0.2, 0.7 wt.%) alloys cast by high-pressure die casting (HPDC), permanent mold casting (PMC), and sand casting (SC) techniques. The results indicated that with increasing Gd content, the grain sizes of the HPDC alloy had a slight change, but the grains of the PMC and SC alloys were significantly refined. Besides, the acicular Al 11 RE 3 phase was modified into the short-rod shape under the three casting conditions. The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation. With increasing Gd content, the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation. The impact stress was higher than the tensile stress, exhibiting a strain rate sensitivity for the mechanical response; however, the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain. Abundant dimples covered the fracture surface of the fine-grained HPDC alloys, indicating a typical ductile fracture. Nevertheless, due to the deficient {10 1 ¯ 2} twinning activity and the suppressed grain boundary sliding during the impact event, the HPDC alloys showed insufficient plastic deformation capacity. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF