1. Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes.
- Author
-
Mathieu M, Friedrich C, Ducrot N, Zannoni J, Sylvie T, Jerraya N, Rousseaux S, Chuffart F, Kosmider O, Karim Z, and Park S
- Subjects
- Humans, Mice, Animals, Mutation, Oxidative Stress, Myelodysplastic Syndromes drug therapy, Myelodysplastic Syndromes genetics
- Abstract
In low-risk myelodysplastic syndrome (LR-MDS), erythropoietin (EPO) is widely used for the treatment of chronic anemia. However, initial response to EPO has time-limited effects. Luspatercept reduces red blood cell transfusion dependence in LR-MDS patients. Here, we investigated the molecular action of luspatercept (RAP-536) in an in vitro model of erythroid differentiation of MDS, and also in a in vivo PDX murine model with primary samples of MDS patients carrying or not SF3B1 mutation. In our in vitro model, RAP-536 promotes erythroid proliferation by increasing the number of cycling cells without any impact on apoptosis rates. RAP-536 promoted late erythroid precursor maturation while decreasing intracellular reactive oxygen species level. RNA sequencing of erythroid progenitors obtained under RAP-536 treatment showed an enrichment of genes implicated in positive regulation of response to oxidative stress and erythroid differentiation. In our PDX model, RAP-536 induces a higher hemoglobin level. RAP-536 did not modify variant allele frequencies in vitro and did not have any effect against leukemic burden in our PDX model. These results suggest that RAP-536 promotes in vivo and in vitro erythroid cell differentiation by decreasing ROS level without any remarkable impact on iron homeostasis and on mutated allele burden., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF