1. Nuclear volume effects in kinetic isotope fractionation: A case study of mercury oxidation by chlorine species.
- Author
-
Yang, Chenlu, Zhang, Yining, and Liu, Yun
- Subjects
- *
KINETIC isotope effects , *MERCURY oxidation , *ISOTOPIC fractionation , *MERCURY isotopes , *AB-initio calculations , *OXIDATION , *WATER disinfection - Abstract
It is well-known that the equilibrium isotope fractionation of mercury (Hg) includes classical mass-dependent fractionations (MDFs) and nuclear volume effect (NVE) induced mass-independent fractionations (MIFs). However, the effect of the NVE on these kinetic processes is not known. The total fractionations (MDFs + NVE-induced MIFs) of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes. NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages (named the electron density scaling method). Additionally, the NVE-induced kinetic isotope effect (KIE) of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species. Total KIEs for 202Hg/198Hg ranging from − 2.27‰ to 0.96‰ are obtained. Three anomalous 202Hg-enriched KIEs (δ202Hg/198Hg = 0.83‰, 0.94‰, and 0.96‰,) caused by the NVE are observed, which are quite different from the classical view (i.e., light isotopes react faster than the heavy ones). The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF