1. Biodegradation of non-steroidal anti-inflammatory drug loxoprofen by a hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic conditions.
- Author
-
Yin R, Wu J, Nagai K, Mori T, Ono A, Wang J, Kawagishi H, and Hirai H
- Subjects
- Biodegradation, Environmental, Phenylpropionates metabolism, Anti-Inflammatory Agents, Non-Steroidal metabolism, Phanerochaete metabolism, Lignin metabolism
- Abstract
Loxoprofen has been widely used as a non-steroidal anti-inflammatory drug globally and it can also persist in the environment. Although it is known to be a non-toxic drug, its presence may still pose a potential risk to organisms in the environment. Here, the hyper lignin-degrading fungus Phanerochaete sordida YK-624 was used to study the degradation of loxoprofen. This fungus showed excellent loxoprofen biodegradation ability with 90.4% and 93.4% after one day of incubation at lower concentrations of 0.01 and 0.005 mM, respectively. And at a higher concentration of 0.1 mM, a significant removal of 94.2% was also observed after 10 days of incubation. In this study, four metabolites were isolated and determined by HR-ESI-MS and NMR. Furthermore, LC/MS analysis suggested the presence of intermediate hydroxy loxoprofen. In addition, loxoprofen-OH was also identified as a metabolite of loxoprofen through comparison with the synthesized compounds. In this metabolism of loxoprofen, cytochrome P450 may play a significant role. Interestingly, P. sordida YK-624 showed enantioselectivity in the degradation process of loxoprofen. By these results, three degradation pathways of loxoprofen by P. sordida YK-624 were hypothesized. To the best of our knowledge, this is the first report describing the potential degradation mechanisms of loxoprofen by a white-rot fungus., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF