13 results on '"K. S. Khaw"'
Search Results
2. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon <math><mi>g</mi><mo>−</mo><mn>2</mn></math> Experiment
- Author
-
P. Bloom, P. Kammel, Timothy Chupp, C. Schlesier, P. Girotti, M. J. Lee, A. Nath, Frederick Gray, C. Gabbanini, D. Shemyakin, C. C. Polly, L. Cotrozzi, V. N. Duginov, G. Venanzoni, T. Stuttard, G. Lukicov, M. Iacovacci, H. E. Swanson, T. P. Gorringe, B. C.K. Casey, J. Grange, N. H. Tran, K. W. Hong, K. T. Pitts, R. T. Chislett, Fabrizio Marignetti, A. Lucà, Martin Fertl, E. Barlas-Yucel, J. George, A. Kuchibhotla, Dariush Hampai, T. Walton, D. Cauz, G. Sweetmore, J. Bono, I. R. Bailey, Dinko Pocanic, J. L. Holzbauer, Gavin Grant Hesketh, J. L. Ritchie, Alexander Keshavarzi, H. P. Binney, A. García, Manolis Kargiantoulakis, A. Basti, Barry King, B. MacCoy, M. Kiburg, David Rubin, Alexey Anisenkov, V. Tishchenko, Marin Karuza, H. Nguyen, P. Di Meo, Claudio Ferrari, N. Kinnaird, Liang Li, L. K. Gibbons, N. Raha, R. Chakraborty, D. Flay, R. N. Pilato, M. Incagli, M. Lancaster, Michael Syphers, S. Baeßler, T. J. V. Bowcock, J. LaBounty, G. M. Piacentino, D. Vasilkova, S. Park, A. Lusiani, T. Albahri, R. Madrak, Z. Hodge, Dominik Stöckinger, A. Chapelain, Brad Plaster, R. M. Carey, Dongdong Li, J. D. Crnkovic, D. W. Hertzog, Selcuk Haciomeroglu, J. P. Miller, Andrzej Wolski, Tabitha Halewood-leagas, Franco Bedeschi, B. L. Roberts, S. Grant, J. Fry, Kyoko Makino, J.B. Hempstead, S. Di Falco, K. S. Khaw, W. Turner, Z. Chu, A. T. Herrod, J. D. Price, T. Barrett, N. V. Khomutov, M. Farooq, P. Winter, J. Stapleton, R. Fatemi, D. Kawall, S. Charity, L. Santi, A. Schreckenberger, E. Valetov, B. Quinn, Yannis K. Semertzidis, B. Li, K. L. Giovanetti, A. E. Tewsley-Booth, S. Lee, Ran Hong, S. Leo, M. D. Galati, A.T. Fienberg, Sultan B. Dabagov, S. P. Chang, L. Kelton, G. Pauletta, Rachel Osofsky, G. Di Sciascio, S. Ganguly, D.A. Sweigart, Meghna Bhattacharya, Thomas Teubner, A. Gioiosa, S. Miozzi, B. Kiburg, J. Esquivel, A. Lorente Campos, David Kessler, E. Bottalico, M. Sorbara, Christopher Stoughton, J. Mott, Kayleigh Anne Thomson, Giovanni Cantatore, A. Fioretti, A. Anastasi, Wanwei Wu, Karie Badgley, S. Mastroianni, O. Kim, William Morse, L. Welty-Rieger, A. L. Lyon, A. Hibbert, A. Weisskopf, P. T. Debevec, W. Gohn, E. J. Ramberg, R. Di Stefano, E. Kraegeloh, Martin Berz, Z. Khechadoorian, S. Ramachandran, D. Stratakis, S. Corrodi, D. A. Tarazona, V. A. Baranov, J. Choi, F. Han, Nicholas A. Pohlman, M. Eads, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, A. Driutti, J. Kaspar, K. R. Labe, N. S. Froemming, E. Frlež, Albahri, T., Anastasi, A., Anisenkov, A., Badgley, K., Baeßler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Basti, A., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Frlež, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchibhotla, A., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Leo, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Lucà, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Počanić, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stöckinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Physics::Instrumentation and Detectors ,Measure (physics) ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,Nuclear physics ,Nuclear Experiment ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Larmor precession ,Physics ,Muon ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,anomalous magnetic moment ,3. Good health ,Magnetic field ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Storage ring ,Fermi Gamma-ray Space Telescope - Abstract
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result., Comment: 29 pages, 19 figures. Published in Physical Review D
- Published
- 2021
3. Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
- Author
-
Z. Chu, M. Eads, M. Lancaster, T. Halewood-Leagas, D. Flay, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, S.B. Dabagov, B. MacCoy, N. H. Tran, K. W. Hong, Liang Li, L. Santi, A. Chapelain, K. S. Khaw, K. T. Pitts, R. Fatemi, I. R. Bailey, E. Bottalico, Andrzej Wolski, R. N. Pilato, P. Bloom, M. Iacovacci, G. Pauletta, M. Incagli, R. Di Stefano, Timothy Chupp, E. Barlas-Yucel, G. Di Sciascio, G. Sweetmore, D. Cauz, P. Girotti, H. Nguyen, Thomas Teubner, D.A. Sweigart, A. E. Tewsley-Booth, G. Piacentino, D. Stöckinger, Karie Badgley, L. Kelton, P. Winter, Brad Plaster, J. L. Holzbauer, R. Chislett, B. Quinn, R. M. Carey, A. Conway, Kyoko Makino, A. Hibbert, B. C. K. Casey, A. Driutti, J. George, A. Lorente Campos, W. Turner, A. Lucà, S. Ramachandran, W. Wu, G. Hesketh, E. Valetov, E. Kraegeloh, Franco Bedeschi, A. Gioiosa, P. T. Debevec, L. Cotrozzi, V. N. Duginov, S. Corrodi, S. Miozzi, Yannis K. Semertzidis, M. J. Lee, S. Mastroianni, P. Di Meo, Martin Berz, K. L. Giovanetti, D. Stratakis, G. Lukicov, C. Gabbanini, J.B. Hempstead, A. Weisskopf, V. Tishchenko, B. Kiburg, H. E. Swanson, O. Kim, Michael Syphers, R. Osofsky, T. Stuttard, J. Esquivel, Dariush Hampai, T. J. V. Bowcock, Adam L. Lyon, Z. Khechadoorian, Meghna Bhattacharya, T. Barrett, Martin Fertl, D. Shemyakin, V. A. Baranov, Manolis Kargiantoulakis, R. Madrak, Marin Karuza, D. Vasilkova, S. Park, N. Kinnaird, A. Lusiani, T. Albahri, E. Ramberg, Nicholas A. Pohlman, D. Kawall, A. Schreckenberger, J. L. Ritchie, A. T. Herrod, Selcuk Haciomeroglu, L. K. Gibbons, J. Stapleton, Fabrizio Marignetti, K. Thomson, J. LaBounty, W. Gohn, G. Venanzoni, B. Li, Claudio Ferrari, Dinko Pocanic, S. P. Chang, S. Charity, T. Walton, T. P. Gorringe, Benjamin T. King, A. Fioretti, A. Anastasi, Sudeshna Ganguly, S. Lee, Ran Hong, M. D. Galati, A.T. Fienberg, William Morse, L. Welty-Rieger, Alejandro Garcia, J. Grange, J. Choi, Dongdong Li, D. W. Hertzog, A. Keshavarzi, M. Sorbara, F. Han, J. Bono, J. Mott, P. Kammel, C. Schlesier, Giovanni Cantatore, S. Di Falco, R. Chakraborty, C. C. Polly, J. P. Miller, M. Kiburg, J. Kaspar, David Rubin, S. Baeßler, K. R. Labe, N. S. Froemming, H. P. Binney, B. L. Roberts, S. Grant, J. Price, N. Raha, Z. Hodge, N. V. Khomutov, M. Farooq, Jason Crnkovic, D. A. Tarazona, C. Stoughton, A. Nath, Frederick Gray, David Kessler, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Conway, A., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Froemming, N. S., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., Wu, W., Baeßler, S., Lucà, A., Počanić, D., and Stöckinger, D.
- Subjects
Field (physics) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,010305 fluids & plasmas ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Proton spin crisis ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Larmor precession ,Physics ,Muon ,Settore FIS/01 - Fisica Sperimentale ,VACUUM POLARIZATION CONTRIBUTIONSTEMPERATURE-DEPENDENCEPROTON NMRMOMENTSUSCEPTIBILITYTERMS ,anomalous magnetic moment ,Muon g-2 Experiment, anomalous precession frequency ,Magnetic field ,anomalous precession frequency ,Muon g-2 Experiment ,Fermi Gamma-ray Space Telescope - Abstract
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^\circ$C. The measured field is weighted by the muon distribution resulting in $\tilde{\omega}'^{}_p$, the denominator in the ratio $\omega^{}_a$/$\tilde{\omega}'^{}_p$ that together with known fundamental constants yields $a^{}_\mu$. The reported uncertainty on $\tilde{\omega}'^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb., Comment: Added one citation and corrected missing normalization in Eqs (35) and (36)
- Published
- 2021
- Full Text
- View/download PDF
4. Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
- Author
-
K. S. Khaw, C. Schlesier, Diktys Stratakis, R. Fatemi, S. Corrodi, D. Newton, K. T. Pitts, R. T. Chislett, L. K. Gibbons, Kyoko Makino, E. Bottalico, A. Gioiosa, J. LaBounty, J. Bono, I. R. Bailey, P. Kammel, D. Kawall, T. J. V. Bowcock, H. P. Binney, W. Turner, A. T. Herrod, S. Miozzi, A. Schreckenberger, E. Valetov, N. H. Tran, K. W. Hong, J. Esquivel, M. Sorbara, Christopher Stoughton, Fabrizio Marignetti, A. Lucà, L. Kelton, M. Eads, D. Stöckinger, T. Barrett, G. Piacentino, J. Mott, S. Baeßler, Bck Casey, Kayleigh Anne Thomson, Giovanni Cantatore, Rachel Osofsky, M. Kiburg, E. Barlas-Yucel, Michael Syphers, C. C. Polly, J. Choi, R. Chakraborty, D. Flay, David Rubin, J. Grange, N. A. Kuchinskiy, M. W. Smith, G. Lukicov, M. Iacovacci, G. Pauletta, J. L. Ritchie, B. MacCoy, L. Cotrozzi, V. N. Duginov, A. Lorente Campos, S. Lee, Ran Hong, G. Sweetmore, D.A. Sweigart, M. Korostelev, Dongdong Li, D. W. Hertzog, Alexander Keshavarzi, G. Di Sciascio, Alejandro L. Garcia, Liang Li, F. Han, D. Sathyan, A.T. Fienberg, Sultan B. Dabagov, M. J. Lee, S. P. Chang, Benjamin T. King, Marin Karuza, R. N. Pilato, M. Incagli, J.B. Hempstead, B. Quinn, L. Santi, N. Kinnaird, F. Gray, P. Winter, L. Welty-Rieger, Meghna Bhattacharya, H. Nguyen, P. Di Meo, T. Stuttard, A. L. Lyon, David Kessler, A. Chapelain, J. Kaspar, B. Li, Galati, Sudeshna Ganguly, Andrzej Wolski, A. Driutti, D. A. Tarazona, Brad Plaster, R. M. Carey, D. Cauz, G. Venanzoni, J. Fry, B. Kiburg, J. P. Miller, W. Gohn, B. L. Roberts, S. Grant, V. A. Baranov, Nicholas A. Pohlman, N. V. Khomutov, M. Farooq, Jason Crnkovic, A. Hibbert, K. R. Labe, P. T. Debevec, Thomas Teubner, S. Di Falco, J. D. Price, Yi Kim, I.B. Logashenko, Yannis K. Semertzidis, K. L. Giovanetti, A. E. Tewsley-Booth, E. Frlež, Martin Berz, S. Charity, T. Walton, Z. Khechadoorian, S. Ramachandran, A. Fiedler, T. P. Gorringe, William Morse, A. Fioretti, A. Anastasi, O. Kim, A. Weisskopf, Wanwei Wu, Karie Badgley, S. Mastroianni, J. L. Holzbauer, Manolis Kargiantoulakis, S. Park, A. Lusiani, T. Albahri, R. Madrak, Selcuk Haciomeroglu, Z. Chu, Dariush Hampai, Gavin Grant Hesketh, J. George, Tishchenko, D. Vasilkova, Franco Bedeschi, P. Bloom, Timothy Chupp, P. Girotti, Nathan Froemming, J. Stapleton, Dinko Pocanic, M. Lancaster, C. Gabbanini, N. Raha, H. E. Swanson, Martin Fertl, Z. Hodge, Tabitha Halewood-leagas, E. J. Ramberg, A. Nath, R. Di Stefano, E. Kraegeloh, Claudio Ferrari, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fiedler, A., Fienberg, A. T., Fioretti, A., Flay, D., Frlez, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Korostelev, M., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Newton, D., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Sathyan, D., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Larmor precession ,Physics ,Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Muon ,Physics and Astronomy (miscellaneous) ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,FOS: Physical sciences ,Surfaces and Interfaces ,01 natural sciences ,High Energy Physics - Experiment ,Magnetic field ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon magnetic anomaly ,0103 physical sciences ,Physics - Accelerator Physics ,Fermilab ,Pitch angle ,010306 general physics ,G-2 EXPERIMENTFREQUENCY ,Storage ring ,Beam (structure) - Abstract
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $\omega_a^m$ is 0.50 $\pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $\omega_a^m$., Comment: 35 pages, 29 figures. Accepted by Phys. Rev. Accel. Beams
- Published
- 2021
- Full Text
- View/download PDF
5. Demonstration of Muon-Beam Transverse Phase-Space Compression
- Author
-
Andreas Eggenberger, K. S. Khaw, Florian M. Piegsa, Gunther Wichmann, Andreas Knecht, Ryoto Iwai, Narongrit Ritjoho, C. Petitjean, Angela Papa, Thomas J. Phillips, N. J. Ayres, V. Bondar, Klaus Kirch, Aldo Antognini, D. Taqqu, Daniel M. Kaplan, Ivana Belosevic, Alexey Stoykov, and Malte Hildebrandt
- Subjects
Physics ,Accelerator Physics (physics.acc-ph) ,Muon ,Density gradient ,010308 nuclear & particles physics ,Muonium ,General Physics and Astronomy ,FOS: Physical sciences ,01 natural sciences ,Magnetic field ,Transverse plane ,Compression (functional analysis) ,Phase space ,0103 physical sciences ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Atomic physics ,010306 general physics ,Beam (structure) - Abstract
We demonstrate efficient transverse compression of a 12.5 MeV/c muon beam stopped in a helium gas target featuring a vertical density gradient and crossed electric and magnetic fields. The muon stop distribution extending vertically over 14 mm was reduced to a 0.25 mm size (rms) within 3.5 μs. The simulation including cross sections for low-energy μ+-He elastic and charge exchange (μ+↔ muonium) collisions describes the measurements well. By combining the transverse compression stage with a previously demonstrated longitudinal compression stage, we can improve the phase space density of a μ+ beam by a factor of 1010 with 10−3 efficiency., Physical Review Letters, 125 (16), ISSN:0031-9007, ISSN:1079-7114
- Published
- 2020
6. muCool: a next step towards efficient muon beam compression
- Author
-
Angela Papa, Alexey Stoykov, Andreas Eggenberger, Thomas J. Phillips, Malte Hildebrandt, Narongrit Ritjoho, Andreas Knecht, Daniel M. Kaplan, Ivana Belosevic, K. S. Khaw, Klaus Kirch, Aldo Antognini, Florian M. Piegsa, Gunther Wichmann, C. Petitjean, Ryoto Iwai, Yu Bao, and D. Taqqu
- Subjects
Physics ,Accelerator Physics (physics.acc-ph) ,Muon ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,lcsh:Astrophysics ,01 natural sciences ,Magnetic field ,Nuclear physics ,Phase space ,Electric field ,lcsh:QB460-466 ,0103 physical sciences ,Perpendicular ,lcsh:QC770-798 ,Physics::Accelerator Physics ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,High Energy Physics::Experiment ,Physics - Accelerator Physics ,Beam emittance ,010306 general physics ,Engineering (miscellaneous) ,Energy (signal processing) ,Beam (structure) - Abstract
A novel device to compress the phase space of a muon beam by a factor of 1010 with a 10−3 efficiency is under development. A surface muon beam is stopped in a helium gas target consisting of several compression stages, wherein strong electric and magnetic fields are applied. The spatial extent of the stopped muon swarm is decreased by means of these fields until muons with eV energy are extracted into vacuum through a small orifice. It was observed that a 20 cm long muon stop distribution can be compressed in the longitudinal direction to a sub-mm extent within 2 μs. Additionally, a drift perpendicular to the magnetic field of the compressed low-energy muon swarm was successfully demonstrated, paving the way towards extraction from the gas and re-acceleration of the muons., The European Physical Journal C, 79 (5), ISSN:1434-6044, ISSN:1434-6052
- Published
- 2019
7. Muon g-2 reconstruction and analysis framework for the muon anomalous precession frequency
- Author
-
K. S. Khaw
- Subjects
Physics ,Larmor precession ,History ,Measure (data warehouse) ,Muon ,Physics - Instrumentation and Detectors ,Anomalous magnetic dipole moment ,Physics::Instrumentation and Detectors ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Computer Science Applications ,Education ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Data quality ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Fermilab ,Beam (structure) - Abstract
The Muon g-2 experiment at Fermilab, with the aim to measure the muon anomalous magnetic moment to an unprecedented level of 140~ppb, has started beam and detector commissioning in Summer 2017. To deal with incoming data projected to be around tens of petabytes, a robust data reconstruction and analysis chain based on Fermilab's \textit{art} event-processing framework is developed. Herein, I report the current status of the framework, together with its novel features such as multi-threaded algorithms for online data quality monitor (DQM) and fast-turnaround operation (nearline). Performance of the framework during the commissioning run is also discussed., Comment: 6 pages, 6 figures, the 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017)
- Published
- 2017
- Full Text
- View/download PDF
8. Performance of the Muon g−2 calorimeter and readout systems measured with test beam data
- Author
-
D.A. Peterson, M. Bartolini, K. L. Giovanetti, N.T. Rider, A. Kuchibhotla, A. Gioiosa, S. Ganguly, A.T. Fienberg, A. Chapelain, H. P. Binney, W. Gohn, R. Bjorkquist, J. Kaspar, C. Schlesier, T. P. Gorringe, M. Iacovacci, A. Driutti, A. Lusiani, S. Leo, M. W. Smith, T. Stuttard, D. W. Hertzog, G. Pauletta, S. Mastroianni, L. K. Gibbons, Dinko Pocanic, G. Venanzoni, Claudio Ferrari, D.A. Sweigart, T. D. Van Wechel, K. S. Khaw, J.B. Hempstead, C. Gabbanini, and A. Fioretti
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Electrical engineering ,7. Clean energy ,01 natural sciences ,Silicon photomultiplier ,Data acquisition ,0103 physical sciences ,Calibration ,Waveform ,Fermilab ,Electronics ,010306 general physics ,business ,Instrumentation - Abstract
A single calorimeter station for the Muon g − 2 experiment at Fermilab includes the following subsystems: a 54-element array of PbF 2 Cherenkov crystals read out by large-area SiPMs, bias and slow-control electronics, a suite of 800 MSPS waveform digitizers, a clock and control distribution network, a gain calibration and monitoring system, and a GPU-based front-end which is read out through a MIDAS data acquisition environment. The entire system performance was evaluated using 2.5–5 GeV electrons at the End Station Test Beam at SLAC. This paper includes a description of the individual subsystems and the results of measurements of the energy response and resolution, energy-scale stability, timing resolution, and spatial uniformity. All measured performances meet or exceed the g − 2 experimental requirements. Based on the success of the tests, the complete production of the required 24 calorimeter stations has been made and installation into the main experiment is complete. Furthermore, the calorimeter response measurements reported here informed the design of the reconstruction algorithms that are now employed in the running g − 2 experiment.
- Published
- 2019
9. Spatial confinement of muonium atoms
- Author
-
Zaher Salman, Laszlo Liszkay, K. S. Khaw, Paolo Crivelli, Thomas Prokscha, Klaus Kirch, Aldo Antognini, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), and Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay
- Subjects
Atomic Physics (physics.atom-ph) ,measurement methods ,Muonium ,FOS: Physical sciences ,Electron ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,Physics - Atomic Physics ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,Bound state ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics::Atomic Physics ,010306 general physics ,Spectroscopy ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,muonium ,Muon ,Mesoporous silica ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,laser ,Reflection (mathematics) ,confinement ,spectrometer ,silicon: oxygen ,atom: excited state ,Atomic physics ,Law of cosines - Abstract
We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica reflects between two SiO$_2$ confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy., 5 pages, 6 figures
- Published
- 2016
10. Muon cooling: longitudinal compression
- Author
-
Wilhelm Bertl, Klaus Kirch, Yu Bao, Aldo Antognini, Malte Hildebrandt, D. Taqqu, Florian M. Piegsa, Angela Papa, Alexey Stoykov, Kamil Sedlak, C. Petitjean, Stefan Ritt, and K. S. Khaw
- Subjects
Accelerator Physics (physics.acc-ph) ,Physics ,Surface (mathematics) ,Muon ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,General Physics and Astronomy ,Order (ring theory) ,7. Clean energy ,Magnetic field ,Nuclear physics ,Microsecond ,Compression (functional analysis) ,Phase space ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Beam (structure) - Abstract
A 10 MeV/c $\mu^+$ beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon 'swarm' has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 $\mu$s. This paves the way for preparation of a high quality muon beam., Comment: 5 pages, 6 figures
- Published
- 2014
11. Testing antimatter gravity with muonium
- Author
-
Klaus Kirch and K. S. Khaw
- Subjects
Phase space compression ,Gravity (chemistry) ,Physics::General Physics ,Physics - Instrumentation and Detectors ,Atomic Physics (physics.atom-ph) ,Muonium ,FOS: Physical sciences ,01 natural sciences ,Physics - Atomic Physics ,Acceleration ,Gravitational potential ,General Relativity and Quantum Cosmology ,Physics::Popular Physics ,Gravitational field ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Annual variation ,Physics::Atomic Physics ,010306 general physics ,Spectroscopy ,Physics ,010308 nuclear & particles physics ,Antimatter gravity ,Astronomy ,Mach-Zehnder interferometer ,Muon spin rotation ,Superfluid helium ,Instrumentation and Detectors (physics.ins-det) ,Redshift ,Antimatter - Abstract
The debate about how antimatter or different antimatter systems behave gravitationally will be ultimately decided by experiments measuring directly the acceleration of various antimatter probes in the gravitational field of the Earth or perhaps redshift effects in antimatter atoms caused by the annual variation of the Sun's gravitational potential at the location of the Earth. Muonium atoms may be used to probe the gravitational interaction of leptonic, second generation antimatter. We discuss the progress of our work towards enabling such experiments with muonium., International Journal of Modern Physics: Conference Series, 30, ISSN:2010-1945
- Published
- 2014
- Full Text
- View/download PDF
12. Muonium Emission into Vacuum from Mesoporous Thin Films at Cryogenic Temperatures
- Author
-
K. S. Khaw, Bernardo Barbiellini, K. Kwuida, Laszlo Liszkay, Paolo Crivelli, Thomas Prokscha, Zaher Salman, Klaus Kirch, Aldo Antognini, Elvezio Morenzoni, Florian M. Piegsa, and Andreas Suter
- Subjects
Physics ,Atomic Physics (physics.atom-ph) ,010308 nuclear & particles physics ,Muonium ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,Physics - Atomic Physics ,High Energy Physics - Experiment ,3. Good health ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Thin film ,Atomic physics ,010306 general physics ,Energy (signal processing) - Abstract
We report on Muonium (Mu) emission into vacuum following {\mu}+ implantation in mesoporous thin SiO2 films. We obtain a yield of Mu into vacuum of (38\pm4)% at 250 K temperature and (20\pm4)% at 100 K for 5 keV {\mu}+ implantation energy. From the implantation energy dependence of the Mu vacuum yield we determine the Mu diffusion constants in these films: D250KMu = (1.6 \pm 0.1) \times 10-4 cm2/s and D100KMu = (4.2\pm0.5)\times10-5 cm2/s. Describing the diffusion process as quantum mechanical tunneling from pore-to-pore, we reproduce the measured temperature dependence T^3/2 of the diffusion constant. We extract a potential barrier of (-0.3 \pm 0.1) eV which is consistent with our computed Mu work-function in SiO2 of [-0.3,-0.9] eV. The high Mu vacuum yield even at low temperatures represents an important step towards next generation Mu spectroscopy experiments., Comment: 5 pages, 5 Figures
- Published
- 2012
13. The laser-based gain monitoring system of the calorimeters in the Muon g −2 experiment at Fermilab
- Author
-
S.B. Dabagov, A. Chapelain, S. Di Falco, G. Di Sciascio, M. Incagli, A. Boiano, A. Lusiani, D. Cauz, Dariush Hampai, L. K. Gibbons, J.B. Hempstead, G. M. Piacentino, A. Fioretti, A. Anastasi, E. Bottalico, N. Raha, D. W. Hertzog, G. Venanzoni, A.T. Fienberg, R. Di Stefano, Fabrizio Marignetti, C. Gabbanini, Claudio Ferrari, A. Nath, F. Bedeschi, G. Pauletta, K. S. Khaw, S. Mastroianni, G. Corradi, M. Iacovacci, M. W. Smith, Marin Karuza, A. Gioiosa, S. Donati, S. Miozzi, A. Basti, A. Driutti, M. Sorbara, P. Girotti, D.A. Sweigart, Giovanni Cantatore, P. Di Meo, L. Santi, J. Kaspar, Anastasi, A., Basti, A., Bedeschi, F., Boiano, A., Bottalico, E., Cantatore, G., Cauz, D., Chapelain, A. T., Corradi, G., Dabagov, S., Falco, S. D., Meo, P. D., Sciascio, G. D., Stefano, R. D., Donati, S., Driutti, A., Ferrari, C., Fienberg, A. T., Fioretti, A., Gabbanini, C., Gibbons, L. K., Gioiosa, A., Girotti, P., Hampai, D., Hempstead, J. B., Hertzog, D. W., Iacovacci, M., Incagli, M., Karuza, M., Kaspar, J., Khaw, K. S., Lusiani, A., Marignetti, F., Mastroianni, S., Miozzi, S., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M., Sorbara, M., Sweigart, D. A., Venanzoni, G., Falco, S. Di, Meo, P. Di, Sciascio, G. Di, and Stefano, R. Di
- Subjects
sources ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Detector alignment and calibration methods (lasers, sources, particle-beams) ,FOS: Physical sciences ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,03 medical and health sciences ,Calorimeters ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,law ,0103 physical sciences ,Calibration ,Fermilab ,Instrumentation ,Mathematical Physics ,Physics ,Calorimeter ,Muon ,010308 nuclear & particles physics ,Anomaly (natural sciences) ,Monitoring system ,particle-beams) ,Instrumentation and Detectors (physics.ins-det) ,Laser ,muon g-2 ,3. Good health ,Detector alignment and calibration methods (lasers ,High Energy Physics::Experiment ,Order of magnitude - Abstract
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central component of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04\% precision on the short-term ($\sim 1\,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met., 33 pages,24 figures. Matches the published version
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.