1. Solubilization and Purification of α
- Author
-
Estelle, Dransart, Aurélie, Di Cicco, Ahmed, El Marjou, Daniel, Lévy, Staffan, Johansson, Ludger, Johannes, and Massiullah, Shafaq-Zadah
- Subjects
Integrins ,Liver ,Cryoelectron Microscopy ,Cell Adhesion ,Animals ,Cell Communication ,Rats - Abstract
Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α
- Published
- 2022