1. Understanding the Relationship between Solar Coronal Abundances and F10.7 cm Radio Emission
- Author
-
Andy S. H. To, Alexander W. James, T. S. Bastian, Lidia van Driel-Gesztelyi, David M. Long, Deborah Baker, David H. Brooks, Samantha Lomuscio, David Stansby, and Gherardo Valori
- Subjects
The Sun and the Heliosphere ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Sun-as-a-star coronal plasma composition, derived from full-Sun spectra, and the F10.7 radio flux (2.8 GHz) have been shown to be highly correlated (r = 0.88) during solar cycle 24. However, this correlation becomes nonlinear during increased solar magnetic activity. Here, we use co-temporal, high spatial resolution, multi-wavelength images of the Sun to investigate the underlying causes of the non-linearity between coronal composition (FIP bias) and F10.7 solar index correlation. Using the Karl G. Jansky Very Large Array (JVLA), Hinode/EIS (EUV Imaging Spectrometer), and the Solar Dynamic Observatory (SDO), we observed a small active region, AR 12759, throughout the solar atmosphere from the photosphere to the corona. Results of this study show that the magnetic field strength (flux density) in active regions plays an important role in the variability of coronal abundances, and it is likely the main contributing factor to this non-linearity during increased solar activity. Coronal abundances above cool sunspots are lower than in dispersed magnetic plage regions. Strong magnetic concentrations are associated with stronger F10.7 cm gyroresonance emission. Considering that as the solar cycle moves from minimum to maximum, the size of sunspots and their field strength increase with gyroresonance component, the distinctly different tendencies of radio emission and coronal abundances in the vicinity of sunspots is the likely cause of saturation of Sun-as-a-star coronal abundances during solar maximum, while the F10.7 index remains well correlated with the sunspot number and other magnetic field proxies., Comment: 15 pages, 5 figures, 2 tables, accepted for publication in The Astrophysical Journal
- Published
- 2023
- Full Text
- View/download PDF