1. Coupling techniques for nonlinear hyperbolic equations. II. Resonant interfaces with internal structure
- Author
-
Benjamin Boutin, Philippe G. LeFloch, Frédéric Coquel, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), The three authors were partially supported by the Innovative Training Networks (ITN) grant 642768 (ModCompShock), and by the Centre National de la Recherche Scientifique (CNRS), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Statistics and Probability ,Structure (category theory) ,01 natural sciences ,Regularization (mathematics) ,symbols.namesake ,Mathematics - Analysis of PDEs ,35L65, 35D40 ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Physics ,Coupling ,Series (mathematics) ,Applied Mathematics ,Mathematical analysis ,General Engineering ,Scalar (physics) ,3. Good health ,Computer Science Applications ,010101 applied mathematics ,Nonlinear system ,Riemann problem ,symbols ,Hyperbolic partial differential equation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis of PDEs (math.AP) - Abstract
In the first part of this series, an augmented PDE system was introduced in order to couple two nonlinear hyperbolic equations together. This formulation allowed the authors, based on Dafermos's self-similar viscosity method, to establish the existence of self-similar solutions to the coupled Riemann problem. We continue here this analysis in the {restricted} case of one-dimensional scalar equations and investigate the internal structure of the interface in order to derive a selection criterion associated with the underlying regularization mechanism and, in turn, to characterize the nonconservative interface layer. In addition, we identify a new criterion that selects double-waved solutions that are also continuous at the interface. We conclude by providing some evidence that such solutions can be non-unique when dealing with non-convex flux-functions., 29 pages
- Published
- 2020
- Full Text
- View/download PDF