151. Galois irreducibility implies cohomology freeness for KHT Shimura varieties
- Author
-
Boyer, Pascal, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, ANR-14-CE25-0002,PerCoLaTor,PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion(2014), Boyer, Pascal, and Appel à projets générique - PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion - - PerCoLaTor2014 - ANR-14-CE25-0002 - Appel à projets générique - VALID
- Subjects
Mathematics::Algebraic Geometry ,Mathematics - Number Theory ,Mathematics::Number Theory ,FOS: Mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Number Theory (math.NT) ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Mathematics::Representation Theory ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
Given a KHT Shimura variety provided with an action of its unramified Hecke algebra $\mathbb T$, we proved in a previous work, see also the work of Caraiani-Scholze for other PEL Shimura varieties, that its localized cohomology groups at a generic maximal ideal $\mathfrak m$ of $\mathbb T$, appear to be free. In this work, we obtain the same result for $\mathfrak m$ such that its associated Galois $\overline{\mathbb F}_l$-representation $\overline{��_{\mathfrak m}}$ is irreducible, under the hypothesis that $[F(\exp(2i��/l):F]>d$ where $F$ is the reflex field, $d$ the dimension of the KHT Shimura variety and $l$ the residual characteristic.
- Published
- 2020